@article{DuongNguyenTranetal.2015, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Tran, Thanh Ngoc and Tolba, R. H. and Staat, Manfred}, title = {Influence of refrigerated storage on tensile mechanical properties of porcine liver and spleen}, series = {International biomechanics}, volume = {Vol. 2}, journal = {International biomechanics}, number = {Iss. 1}, publisher = {Taylor \& Francis}, address = {London}, issn = {2333-5432}, doi = {10.1080/23335432.2015.1049295}, pages = {79 -- 88}, year = {2015}, language = {en} } @article{BronderPoghossianSchejaetal.2015, author = {Bronder, Thomas and Poghossian, Arshak and Scheja, Sabrina and Wu, Chunsheng and Keusgen, Michael and Mewes, Dieter and Sch{\"o}ning, Michael Josef}, title = {DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer}, series = {Applied Materials \& Interfaces}, volume = {36}, journal = {Applied Materials \& Interfaces}, number = {7}, publisher = {American Chemical Society}, address = {Washington, DC}, doi = {10.1021/acsami.5b05146}, pages = {20068 -- 20075}, year = {2015}, abstract = {Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.}, language = {en} } @article{WuBronderPoghossianetal.2015, author = {Wu, Chunsheng and Bronder, Thomas and Poghossian, Arshak and Werner, Frederik and Sch{\"o}ning, Michael Josef}, title = {Label-free detection of DNA using light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer}, series = {Nanoscale}, volume = {14}, journal = {Nanoscale}, number = {7}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, doi = {10.1039/C4NR07225A}, pages = {6143 -- 6150}, year = {2015}, abstract = {A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout.}, language = {en} } @inproceedings{FrotscherStaat2015, author = {Frotscher, Ralf and Staat, Manfred}, title = {Homogenization of a cardiac tissue construct}, series = {CMBE15 : 4th International Conference on Computational \& Mathematical Biomedical Engineering ; 29th June - 1st July 2015 ; {\´E}cole Normale Sup{\´e}rieure de Cachan ; Cachan (Paris), France}, booktitle = {CMBE15 : 4th International Conference on Computational \& Mathematical Biomedical Engineering ; 29th June - 1st July 2015 ; {\´E}cole Normale Sup{\´e}rieure de Cachan ; Cachan (Paris), France}, editor = {Nithiarasu, Perumal}, publisher = {CMBE}, address = {[s.l.]}, issn = {2227-9385}, pages = {645 -- 648}, year = {2015}, language = {en} } @article{DuongNguyenStaat2015, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Staat, Manfred}, title = {Physical response of hyperelastic models for composite materials and soft tissues}, series = {Asia pacific journal on computational engineering}, volume = {2}, journal = {Asia pacific journal on computational engineering}, number = {3 (December 2015)}, issn = {2196-1166}, doi = {10.1186/s40540-015-0015-x}, pages = {1 -- 18}, year = {2015}, language = {en} } @article{MolinnusBaeckerSiegertetal.2015, author = {Molinnus, Denise and B{\"a}cker, Matthias and Siegert, Petra and Willenberg, H. and Poghossian, Arshak and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline Based on Substrate Recycling Amplification}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.708}, pages = {540 -- 543}, year = {2015}, abstract = {An amperometric enzyme biosensor has been applied for the detection of adrenaline. The adrenaline biosensor has been prepared by modification of an oxygen electrode with the enzyme laccase that operates at a broad pH range between pH 3.5 to pH 8. The enzyme molecules were immobilized via cross-linking with glutaraldehyde. The sensitivity of the developed adrenaline biosensor in different pH buffer solutions has been studied.}, language = {en} } @incollection{PoghossianSchusserBaeckeretal.2015, author = {Poghossian, Arshak and Schusser, Sebastian and B{\"a}cker, M. and Leinhos, Marcel and Sch{\"o}ning, Michael Josef}, title = {Real-time in-situ electrical monitoring of the degradation of biopolymers using semiconductor field-effect devices}, series = {Biodegradable biopolymers. Vol. 1}, booktitle = {Biodegradable biopolymers. Vol. 1}, publisher = {Nova Science Publ.}, address = {Hauppauge}, isbn = {978-1-63483-632-6}, pages = {135 -- 153}, year = {2015}, language = {en} } @inproceedings{PoghossianBronderWuetal.2015, author = {Poghossian, Arshak and Bronder, Thomas and Wu, Chunsheng and Sch{\"o}ning, Michael Josef}, title = {Label-free sensing of biomolecules by their intrinsic molecular charge using field-effect devices}, series = {Semiconductor Micro- and Nanoelectonics : Proceedings of the tenth international conference, Yerevan, Armenia, September 11-13}, booktitle = {Semiconductor Micro- and Nanoelectonics : Proceedings of the tenth international conference, Yerevan, Armenia, September 11-13}, isbn = {978-5-8084-1991-9}, pages = {61 -- 63}, year = {2015}, language = {en} } @article{SchusserKrischerBaeckeretal.2015, author = {Schusser, Sebastian and Krischer, Maximillian and B{\"a}cker, Matthias and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors}, series = {Analytical Chemistry}, volume = {87}, journal = {Analytical Chemistry}, number = {13}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-6882}, doi = {10.1021/acs.analchem.5b00617}, pages = {6607 -- 6613}, year = {2015}, abstract = {Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(d,l-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers.}, language = {en} } @article{BegingLeinhosJablonskietal.2015, author = {Beging, Stefan and Leinhos, Marcel and Jablonski, Melanie and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Studying the spatially resolved immobilisation of enzymes on a capacitive field-effect structure by means of nano-spotting}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431891}, pages = {1353 -- 1358}, year = {2015}, language = {en} }