@article{ReisselTakeiBruneetal.1999, author = {Reißel, Martin and Takei, T. and Brune, M. and K{\"o}ttgen, V.}, title = {FEM Based Durability Analysis of the Knuckle of a Passenger Car / Takei, T. ; Brune, M. ; K{\"o}ttgen, V. ; Reissel, M.}, series = {Proceedings. JSAE Annual Congress (1999)}, journal = {Proceedings. JSAE Annual Congress (1999)}, isbn = {0919-1364}, pages = {17 -- 20}, year = {1999}, language = {en} } @inproceedings{PhamNguyenStaat2012, author = {Pham, Phu Tinh and Nguyen, Thanh Ngoc and Staat, Manfred}, title = {FEM based shakedown analysis of hardening structures}, series = {Proceedings International Conference on Advances in Computational Mechanics (ACOME)}, booktitle = {Proceedings International Conference on Advances in Computational Mechanics (ACOME)}, pages = {870 -- 882}, year = {2012}, language = {en} } @inproceedings{TranStaat2021, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {FEM shakedown analysis of Kirchhoff-Love plates under uncertainty of strength}, series = {Proceedings of UNCECOMP 2021}, booktitle = {Proceedings of UNCECOMP 2021}, isbn = {978-618-85072-6-5}, doi = {10.7712/120221.8041.19047}, pages = {323 -- 338}, year = {2021}, abstract = {A new formulation to calculate the shakedown limit load of Kirchhoff plates under stochastic conditions of strength is developed. Direct structural reliability design by chance con-strained programming is based on the prescribed failure probabilities, which is an effective approach of stochastic programming if it can be formulated as an equivalent deterministic optimization problem. We restrict uncertainty to strength, the loading is still deterministic. A new formulation is derived in case of random strength with lognormal distribution. Upper bound and lower bound shakedown load factors are calculated simultaneously by a dual algorithm.}, language = {en} } @article{TranTrinhDaoetal.2022, author = {Tran, Ngoc Trinh and Trinh, Tu Luc and Dao, Ngoc Tien and Giap, Van Tan and Truong, Manh Khuyen and Dinh, Thuy Ha and Staat, Manfred}, title = {FEM shakedown analysis of structures under random strength with chance constrained programming}, series = {Vietnam Journal of Mechanics}, volume = {44}, journal = {Vietnam Journal of Mechanics}, number = {4}, publisher = {Vietnam Academy of Science and Technology (VAST)}, issn = {0866-7136}, doi = {10.15625/0866-7136/17943}, pages = {459 -- 473}, year = {2022}, abstract = {Direct methods, comprising limit and shakedown analysis, are a branch of computational mechanics. They play a significant role in mechanical and civil engineering design. The concept of direct methods aims to determine the ultimate load carrying capacity of structures beyond the elastic range. In practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and constraints. If strength and loading are random quantities, the shakedown analysis can be formulated as stochastic programming problem. In this paper, a method called chance constrained programming is presented, which is an effective method of stochastic programming to solve shakedown analysis problems under random conditions of strength. In this study, the loading is deterministic, and the strength is a normally or lognormally distributed variable.}, language = {en} } @inproceedings{TranTranMatthiesetal.2016, author = {Tran, Ngoc Trinh and Tran, Thanh Ngoc and Matthies, Hermann G. and Stavroulakis, Georgios Eleftherios and Staat, Manfred}, title = {FEM Shakedown of uncertain structures by chance constrained programming}, series = {PAMM Proceedings in Applied Mathematics and Mechanics}, volume = {16}, booktitle = {PAMM Proceedings in Applied Mathematics and Mechanics}, number = {1}, issn = {1617-7061}, doi = {10.1002/pamm.201610346}, pages = {715 -- 716}, year = {2016}, language = {en} } @article{JildehKirchnerOberlaenderetal.2017, author = {Jildeh, Zaid B. and Kirchner, Patrick and Oberl{\"a}nder, Jan and Kremers, Alexander and Wagner, Torsten and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {FEM-based modeling of a calorimetric gas sensor for hydrogen peroxide monitoring}, series = {physica status solidi a : applications and materials sciences}, journal = {physica status solidi a : applications and materials sciences}, number = {Early View}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201600912}, year = {2017}, abstract = {A physically coupled finite element method (FEM) model is developed to study the response behavior of a calorimetric gas sensor. The modeled sensor serves as a monitoring device of the concentration of gaseous hydrogen peroxide (H2 O2) in a high temperature mixture stream in aseptic sterilization processes. The principle of operation of a calorimetric H2 O2 sensor is analyzed and the results of the numerical model have been validated by using previously published sensor experiments. The deviation in the results between the FEM model and experimental data are presented and discussed.}, language = {en} } @article{PhamStaat2014, author = {Pham, Phu Tinh and Staat, Manfred}, title = {FEM-based shakedown analysis of hardening structures}, series = {Asia Pacific journal on computational engineering}, journal = {Asia Pacific journal on computational engineering}, number = {1}, publisher = {SpringerOpen}, address = {Berlin}, issn = {2196-1166 (E-Journal)}, doi = {10.1186/2196-1166-1-4}, pages = {Article No. 4}, year = {2014}, abstract = {This paper develops a new finite element method (FEM)-based upper bound algorithm for limit and shakedown analysis of hardening structures by a direct plasticity method. The hardening model is a simple two-surface model of plasticity with a fixed bounding surface. The initial yield surface can translate inside the bounding surface, and it is bounded by one of the two equivalent conditions: (1) it always stays inside the bounding surface or (2) its centre cannot move outside the back-stress surface. The algorithm gives an effective tool to analyze the problems with a very high number of degree of freedom. Our numerical results are very close to the analytical solutions and numerical solutions in literature.}, language = {en} } @article{StaatHeitzer1999, author = {Staat, Manfred and Heitzer, M.}, title = {FEM-computation of load carrying capacity of highly loaded passive components by direct methods. Heitzer, M. ; Staat, M.}, series = {Nuclear Engineering and Design. 193 (1999), H. 3}, journal = {Nuclear Engineering and Design. 193 (1999), H. 3}, isbn = {0029-5493}, pages = {349 -- 358}, year = {1999}, language = {en} } @inproceedings{BhattaraiStaat2016, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Female pelvic floor dysfunction: progress weakening of the support system}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, doi = {10.17185/duepublico/40821}, pages = {11 -- 12}, year = {2016}, abstract = {The structure of the female pelvic floor (PF) is an inter-related system of bony pelvis,muscles, pelvic organs, fascias, ligaments, and nerves with multiple functions. Mechanically, thepelvic organ support system are of two types: (I) supporting system of the levator ani (LA) muscle,and (II) the suspension system of the endopelvic fascia condensation [1], [2]. Significantdenervation injury to the pelvic musculature, depolimerization of the collagen fibrils of the softvaginal hammock, cervical ring and ligaments during pregnancy and vaginal delivery weakens thenormal functions of the pelvic floor. Pelvic organ prolapse, incontinence, sexual dysfunction aresome of the dysfunctions which increases progressively with age and menopause due toweakened support system according to the Integral theory [3]. An improved 3D finite elementmodel of the female pelvic floor as shown in Fig. 1 is constructed that: (I) considers the realisticsupport of the organs to the pelvic side walls, (II) employs the improvement of our previous FEmodel [4], [5] along with the patient based geometries, (III) incorporates the realistic anatomy andboundary conditions of the endopelvic (pubocervical and rectovaginal) fascia, and (IV) considersvarying stiffness of the endopelvic fascia in the craniocaudal direction [3]. Several computationsare carried out on the presented computational model with healthy and damaged supportingtissues, and comparisons are made to understand the physiopathology of the female PF disorders.}, language = {en} } @inproceedings{BornheimGriegerBialonski2021, author = {Bornheim, Tobias and Grieger, Niklas and Bialonski, Stephan}, title = {FHAC at GermEval 2021: Identifying German toxic, engaging, and fact-claiming comments with ensemble learning}, series = {Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021}, booktitle = {Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021}, publisher = {Heinrich Heine University}, address = {D{\"u}sseldorf}, doi = {10.48415/2021/fhw5-x128}, pages = {105 -- 111}, year = {2021}, language = {en} } @article{SchuetzWeissbeckerHummeletal.1997, author = {Sch{\"u}tz, S. and Weißbecker, B. and Hummel, Hans E. and Sch{\"o}ning, Michael Josef and Riemer, A. and Kordos, P. and L{\"u}th, H.}, title = {Field effect transistor-insect antenna junction}, series = {Naturwissenschaften}, volume = {84}, journal = {Naturwissenschaften}, issn = {1432-1904}, pages = {86 -- 88}, year = {1997}, language = {en} } @article{SchoeningPoghossianSchultzeetal.2002, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Schultze, J. W. and L{\"u}th, H.}, title = {Field-effect based multifunctional hybrid sensor module for the determination of both (bio-)chemical and physical paramters}, series = {Proceedings of SPIE. 4576 (2002)}, journal = {Proceedings of SPIE. 4576 (2002)}, pages = {149 -- 159}, year = {2002}, language = {en} } @article{PoghossianJablonskiKochetal.2018, author = {Poghossian, Arshak and Jablonski, Melanie and Koch, Claudia and Bronder, Thomas and Rolka, David and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-effect biosensor using virus particles as scaffolds for enzyme immobilization}, series = {Biosensors and Bioelectronics}, volume = {110}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2018.03.036}, pages = {168 -- 174}, year = {2018}, abstract = {A field-effect biosensor employing tobacco mosaic virus (TMV) particles as scaffolds for enzyme immobilization is presented. Nanotubular TMV scaffolds allow a dense immobilization of precisely positioned enzymes with retained activity. To demonstrate feasibility of this new strategy, a penicillin sensor has been developed by coupling a penicillinase with virus particles as a model system. The developed field-effect penicillin biosensor consists of an Al-p-Si-SiO₂-Ta₂O₅-TMV structure and has been electrochemically characterized in buffer solutions containing different concentrations of penicillin G. In addition, the morphology of the biosensor surface with virus particles was characterized by scanning electron microscopy and atomic force microscopy methods. The sensors possessed a high penicillin sensitivity of ~ 92 mV/dec in a nearly-linear range from 0.1 mM to 10 mM, and a low detection limit of about 50 µM. The long-term stability of the penicillin biosensor was periodically tested over a time period of about one year without any significant loss of sensitivity. The biosensor has also been successfully applied for penicillin detection in bovine milk samples.}, language = {en} } @inproceedings{JablonskiKochBronderetal.2017, author = {Jablonski, Melanie and Koch, Claudia and Bronder, Thomas and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-Effect Biosensors Modified with Tobacco Mosaic Virus Nanotubes as Enzyme Nanocarrier}, series = {MDPI Proceeding}, volume = {1}, booktitle = {MDPI Proceeding}, number = {4}, doi = {10.3390/proceedings1040505}, pages = {4}, year = {2017}, language = {en} } @article{BegingMlynekHataihimakuletal.2010, author = {Beging, Stefan and Mlynek, Daniela and Hataihimakul, Sudkanung and Poghossian, Arshak and Baldsiefen, Gerhard and Busch, Heinz and Laube, Norbert and Kleinen, Lisa and Sch{\"o}ning, Michael Josef}, title = {Field-effect calcium sensor for the determination of the risk of urinary stone formation}, series = {Sensors and Actuators B: Chemical. 144 (2010), H. 2}, journal = {Sensors and Actuators B: Chemical. 144 (2010), H. 2}, pages = {374 -- 379}, year = {2010}, language = {en} } @article{PoghossianIngebrandtOffenhaeusseretal.2009, author = {Poghossian, Arshak and Ingebrandt, S. and Offenh{\"a}usser, A. and Sch{\"o}ning, Michael Josef}, title = {Field-effect devices for detecting cellular signals}, series = {Seminars in Cell \& Developmental Biology. 20 (2009), H. 1}, journal = {Seminars in Cell \& Developmental Biology. 20 (2009), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1096-3634}, pages = {41 -- 48}, year = {2009}, language = {en} } @article{PoghossianWeilBaeckeretal.2012, author = {Poghossian, Arshak and Weil, M. H. and B{\"a}cker, Matthias and Mayer, D. and Sch{\"o}ning, Michael Josef}, title = {Field-effect Devices Functionalised with Gold-Nanoparticle/Macromolecule Hybrids: New Opportunities for a Label-Free Biosensing}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.136}, pages = {273 -- 276}, year = {2012}, abstract = {Field-effect capacitive electrolyte-insulator-semiconductor (EIS) sensors functionalised with citrate-capped gold nanoparticles (AuNP) have been used for the electrostatic detection of macromolecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in the AuNP/macromolecule hybrids induced by the adsorption or binding events. A feasibility of the proposed detection scheme has been exemplary demonstrated by realising EIS sensors for the detection of poly-D-lysine molecules.}, language = {en} } @article{GunSchoeningAbouzaretal.2008, author = {Gun, Jenny and Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Poghossian, Arshak and Katz, Evgeny}, title = {Field-Effect Nanoparticle-Based Glucose Sensor on a Chip: Amplification Effect of Coimmobilized Redox Species}, series = {Electroanalysis. 20 (2008), H. 16}, journal = {Electroanalysis. 20 (2008), H. 16}, isbn = {1521-4109}, pages = {1748 -- 1753}, year = {2008}, language = {en} } @article{AbouzarIngebrandtPoghossianetal.2009, author = {Abouzar, Maryam H. and Ingebrandt, S. and Poghossian, Arshak and Zhang, Y. and Moritz, W. and Sch{\"o}ning, Michael Josef}, title = {Field-effect nanoplate capacitive pH sensor based on SOI structure}, series = {Semiconductor micro- and nanoelectronics : Proceedings of the Seventh International Conference , Tsakhcadzor, Armenia July 3-5 2009}, journal = {Semiconductor micro- and nanoelectronics : Proceedings of the Seventh International Conference , Tsakhcadzor, Armenia July 3-5 2009}, pages = {55 -- 58}, year = {2009}, language = {en} } @article{YoshinobuMiyamotoWagneretal.2024, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Field-effect sensors combined with the scanned light pulse technique: from artificial olfactory images to chemical imaging technologies}, series = {Chemosensors}, volume = {12}, journal = {Chemosensors}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors12020020}, pages = {Artikel 20}, year = {2024}, abstract = {The artificial olfactory image was proposed by Lundstr{\"o}m et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices.}, language = {en} }