@article{SchwagerFleschSchwarzboezletal.2022, author = {Schwager, Christian and Flesch, Robert and Schwarzb{\"o}zl, Peter and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e}}, title = {Advanced two phase flow model for transient molten salt receiver system simulation}, series = {Solar Energy}, volume = {232}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0038-092X (print)}, doi = {10.1016/j.solener.2021.12.065}, pages = {362 -- 375}, year = {2022}, abstract = {In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed.}, language = {en} } @inproceedings{GedleSchmitzGielenetal.2022, author = {Gedle, Yibekal and Schmitz, Mark and Gielen, Hans and Schmitz, Pascal and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e} and Mahdi, Zahra and Caminos, Ricardo Alexander Chico and Dersch, J{\"u}rgen}, title = {Analysis of an integrated CSP-PV hybrid power plant}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086236}, pages = {9 Seiten}, year = {2022}, abstract = {In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] - [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20\% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution.}, language = {en} } @inproceedings{MahdiDerschSchmitzetal.2022, author = {Mahdi, Zahra and Dersch, J{\"u}rgen and Schmitz, Pascal and Dieckmann, Simon and Caminos, Ricardo Alexander Chico and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf and Schwager, Christian and Schmitz, Mark and Gielen, Hans and Gedle, Yibekal and B{\"u}scher, Rauno}, title = {Technical assessment of Brayton cycle heat pumps for the integration in hybrid PV-CSP power plants}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086269}, pages = {11 Seiten}, year = {2022}, abstract = {The hybridization of Concentrated Solar Power (CSP) and Photovoltaics (PV) systems is a promising approach to reduce costs of solar power plants, while increasing dispatchability and flexibility of power generation. High temperature heat pumps (HT HP) can be utilized to boost the salt temperature in the thermal energy storage (TES) of a Parabolic Trough Collector (PTC) system from 385 °C up to 565 °C. A PV field can supply the power for the HT HP, thus effectively storing the PV power as thermal energy. Besides cost-efficiently storing energy from the PV field, the power block efficiency of the overall system is improved due to the higher steam parameters. This paper presents a technical assessment of Brayton cycle heat pumps to be integrated in hybrid PV-CSP power plants. As a first step, a theoretical analysis was carried out to find the most suitable working fluid. The analysis included the fluids Air, Argon (Ar), Nitrogen (N2) and Carbon dioxide (CO2). N2 has been chosen as the optimal working fluid for the system. After the selection of the ideal working medium, different concepts for the arrangement of a HT HP in a PV-CSP hybrid power plant were developed and simulated in EBSILON®Professional. The concepts were evaluated technically by comparing the number of components required, pressure losses and coefficient of performance (COP).}, language = {en} } @article{MaurerRiekeSchemmetal.2023, author = {Maurer, Florian and Rieke, Christian and Schemm, Ralf and Stollenwerk, Dominik}, title = {Analysis of an urban grid with high photovoltaic and e-mobility penetration}, series = {Energies}, volume = {16}, journal = {Energies}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16083380}, pages = {18 Seiten}, year = {2023}, abstract = {This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility "Mobilit{\"a}t in Deutschland", which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30\% which reduces the average price of a charged kWh by 35\% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub.}, language = {en} } @article{ŠakićMarinkovićButenwegetal.2023, author = {Šakić, Bogdan and Marinković, Marko and Butenweg, Christoph and Klinkel, Sven}, title = {Influence of slab deflection on the out-of-plane capacity of unreinforced masonry partition walls}, series = {Engineering Structures}, volume = {276}, journal = {Engineering Structures}, editor = {Yang, J.}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-0296}, doi = {10.1016/j.engstruct.2022.115342}, year = {2023}, abstract = {Severe damage of non-structural elements is noticed in previous earthquakes, causing high economic losses and posing a life threat for the people. Masonry partition walls are one of the most commonly used non-structural elements. Therefore, their behaviour under earthquake loading in out-of-plane (OOP) direction is investigated by several researches in the past years. However, none of the existing experimental campaigns or analytical approaches consider the influence of prior slab deflection on OOP response of partition walls. Moreover, none of the existing construction techniques for the connection of partition walls with surrounding reinforced concrete (RC) is investigated for the combined slab deflection and OOP loading. However, the inevitable time-dependent behaviour of RC slabs leads to high values of final slab deflections which can further influence boundary conditions of partition walls. Therefore, a comprehensive study on the influence of slab deflection on the OOP capacity of masonry partitions is conducted. In the first step, experimental tests are carried out. Results of experimental tests are further used for the calibration of the numerical model employed for a parametric study. Based on the results, behaviour under combined loading for different construction techniques is explained. The results show that slab deflection leads either to severe damage or to a high reduction of OOP capacity. Existing practical solutions do not account for these effects. In this contribution, recommendations to overcome the problems of combined slab deflection and OOP loading on masonry partition walls are given. Possible interaction of in-plane (IP) loading, with the combined slab deflection and OOP loading on partition walls, is not investigated in this study.}, language = {en} } @inproceedings{NierlePieper2023, author = {Nierle, Elisabeth and Pieper, Martin}, title = {Measuring social impacts in engineering education to improve sustainability skills}, series = {European Society for Engineering Education (SEFI)}, booktitle = {European Society for Engineering Education (SEFI)}, doi = {10.21427/QPR4-0T22}, pages = {9 Seiten}, year = {2023}, abstract = {In times of social climate protection movements, such as Fridays for Future, the priorities of society, industry and higher education are currently changing. The consideration of sustainability challenges is increasing. In the context of sustainable development, social skills are crucial to achieving the United Nations Sustainable Development Goals (SDGs). In particular, the impact that educational activities have on people, communities and society is therefore coming to the fore. Research has shown that people with high levels of social competence are better able to manage stressful situations, maintain positive relationships and communicate effectively. They are also associated with better academic performance and career success. However, especially in engineering programs, the social pillar is underrepresented compared to the environmental and economic pillars. In response to these changes, higher education institutions should be more aware of their social impact - from individual forms of teaching to entire modules and degree programs. To specifically determine the potential for improvement and derive resulting change for further development, we present an initial framework for social impact measurement by transferring already established approaches from the business sector to the education sector. To demonstrate the applicability, we measure the key competencies taught in undergraduate engineering programs in Germany. The aim is to prepare the students for success in the modern world of work and their future contribution to sustainable development. Additionally, the university can include the results in its sustainability report. Our method can be applied to different teaching methods and enables their comparison.}, language = {en} } @article{DellmannGloriusLitvinovetal.2023, author = {Dellmann, Sophia Florence and Glorius, J. and Litvinov, Yu A. and Reifarth, R. and Al-Khasawneh, Kafa and Aliotta, M. and Bott, L. and Br{\"u}ckner, Benjamin and Bruno, C. G. and Chen, Ruijiu and Davinson, T. and Dickel, T. and Dillmann, Iris and Dmytriev, D. and Erbacher, P. and Freire-Fern{\´a}ndez, D. and Forstner, Oliver and Geissel, H. and G{\"o}bel, K. and Griffin, Christopher J. and Grisenti, R. and Gumberidze, Alexandre and Haettner, Emma and Hagmann, Siegbert and Heil, M. and Heß, R. and Hillenbrand, P.-M. and Joseph, R. and Jurado, B. and Kozhuharov, Christophor and Kulikov, I. and L{\"o}her, Bastian and Langer, Christoph and Leckenby, Guy and Lederer-Woods, C. and Lestinsky, M. and Litvinov, S. A. and Lorenz, B. A. and Lorenz, E. and Marsh, J. and Menz, Esther Babette and Morgenroth, T. and Petridis, N. and Pibernat, Jerome and Popp, U. and Psaltis, Athanasios and Sanjari, Shahab and Scheidenberger, C. and Sguazzin, M. and Sidhu, Ragandeep Singh and Spillmann, Uwe and Steck, M. and St{\"o}hlker, T. and Surzhykov, A. and Swartz, J. A. and T{\"o}rnqvist, H. and Varga, L. and Vescovi, Diego and Weick, H. and Weigand, M. and Woods, P. and Xing, Y. and Yamaguchi, Taiyo}, title = {Proton capture on stored radioactive ¹¹⁸Te ions}, series = {EPJ Web of Conferences}, volume = {279}, journal = {EPJ Web of Conferences}, number = {Article Number: 11018}, publisher = {EDP Sciences}, issn = {2100-014X}, doi = {10.1051/epjconf/202327911018}, pages = {1 -- 5}, year = {2023}, abstract = {Experimental determination of the cross sections of proton capture on radioactive nuclei is extremely difficult. Therefore, it is of substantial interest for the understanding of the production of the p-nuclei. For the first time, a direct measurement of proton-capture cross sections on stored, radioactive ions became possible in an energy range of interest for nuclear astrophysics. The experiment was performed at the Experimental Storage Ring (ESR) at GSI by making use of a sensitive method to measure (p,γ) and (p,n) reactions in inverse kinematics. These reaction channels are of high relevance for the nucleosyn-thesis processes in supernovae, which are among the most violent explosions in the universe and are not yet well understood. The cross section of the ¹¹⁸Te(p,γ) reaction has been measured at energies of 6 MeV/u and 7 MeV/u. The heavy ions interacted with a hydrogen gas jet target. The radiative recombination process of the fully stripped ¹¹⁸Te ions and electrons from the hydrogen target was used as a luminosity monitor. An overview of the experimental method and preliminary results from the ongoing analysis will be presented.}, language = {en} } @misc{SteuerDankertBernhardLangolfetal.2023, author = {Steuer-Dankert, Linda and Bernhard, Sebastian and Langolf, Jessica and Leicht-Scholten, Carmen}, title = {About the paradox of sustainable production and what we can do about it!}, series = {Joint SCORAI-ERSCP-WUR conference on transforming consumption-production systems toward just and sustainable futures (SCP23)}, journal = {Joint SCORAI-ERSCP-WUR conference on transforming consumption-production systems toward just and sustainable futures (SCP23)}, year = {2023}, abstract = {Sustainability is playing an increasingly important role. Not least due to the definition of the sustainable development goals (SDGs) in the framework of the agenda 2030 by the United Nations (UN) in 2015 (United Nations, n.d.), it has become clear that the cooperation of different actors is needed to achieve the defined 17 goals. Industry, as a global actor, has a special role to play in this. In the course of sustainable production processes and chains, the industry is confronted with the responsibility of reflecting on the consequences of its own trade on an ecological, economic, and also social level and deriving measures that, according to the definition of sustainability (Hauff, 1987), will also enable future generations to satisfy their needs. While the ecological pillar of sustainability is already being addressed by different industrial initiatives (Deloitte, 2021), it is questionable to what extent the economic and, above all, the social pillars of sustainability also play a decisive role. Accordingly, it is questionable to what extent sustainability in its triad of social, ecological, and economic aspects is taken into account holistically at all, and thus to what extent the industry contributes to achieving the 17 goals defined by the UN. This paper presents a qualitative study that explores these questions. Interviewing 31 representatives from the manufacturing industry in Germany, results indicate a Paradox of Sustainable Production expressed by a theoretical reflection of the need for focusing on people in production processes on the one hand and a lack of addressing the social pillar of sustainability in concepts on the other hand. However, while it is a troublesome finding given the striking need for sustainable development (The-Sustainable-Development-Goals-Report-2022; Kropp 2019; von Hauff 2021; Roy and Singh 2017), the paradox directly lays out a path of resolving it. This is because, given its nature, we can see that we could resolve it via the implementation of strong educational efforts trying to help the respective people of the manufacturing industry to understand the holistic and interdependent character of sustainable development (The-Sustainable-Development-Goals-Report-2022).}, language = {en} } @misc{SteuerDankertBergPostweilerLeichtScholten2023, author = {Steuer-Dankert, Linda and Berg-Postweiler, Julia and Leicht-Scholten, Carmen}, title = {One does not fit all: applying anti-bias trainings in academia}, series = {Twenty-third international conference on diversity in organizations, communities \& nations June 22 - 23, 2023 Toronto Metropolitan University, Rogers Communication Centre Toronto, Canada}, journal = {Twenty-third international conference on diversity in organizations, communities \& nations June 22 - 23, 2023 Toronto Metropolitan University, Rogers Communication Centre Toronto, Canada}, year = {2023}, abstract = {Anti-bias trainings are increasingly demanded and practiced in academia and industry to increase employees' sensitivity to discrimination, racism, and diversity. Under the heading of "Diversity Management", anti-bias trainings are mainly offered as one-off workshops intending to raise awareness of unconscious biases, create a diversity-affirming corporate culture, awake awareness of the potential of diversity, and ultimately enable the reflection of diversity in development processes. However, coming from childhood education, research and scientific articles on the sustainable effectiveness of anti-bias in adulthood, especially in academia, are very scarce. In order to fill this research gap, the paper explores how sustainable the effects of individual anti-bias trainings on the behavior of participants are. In order to investigate this, participant observation in a qualitative pre-post setting was conducted, analyzing anti-bias trainings in an academic context. Two observers actively participated in the training sessions and documented the activities and reflection processes of the participants. Overall, the results question the effectiveness of single anti-bias trainings and show that a target-group adaptive approach is mandatory due to the background of the approach in early childhood education. Therefore, it can be concluded that anti-bias work needs to be adapted to the target group's needs and reality of life. Furthermore, the study reveals that single anti-bias trainings must be embedded in a holistic diversity management approach to stimulate sustainable reflection processes among the target group. This paper is one of the first to scientifically evaluate anti-bias training effectiveness, especially in engineering sciences and the university context.}, language = {en} } @article{HoffstadtCheenakulaNikolauszetal.2023, author = {Hoffstadt, Kevin and Cheenakula, Dheeraja and Nikolausz, Marcell and Krafft, Simone and Harms, Hauke and Kuperjans, Isabel}, title = {Design and construction of a new reactor for flexible biomethanation of hydrogen}, series = {Fermentation}, volume = {9}, journal = {Fermentation}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2311-5637}, doi = {10.3390/fermentation9080774}, pages = {1 -- 16}, year = {2023}, abstract = {The increasing share of renewable electricity in the grid drives the need for sufficient storage capacity. Especially for seasonal storage, power-to-gas can be a promising approach. Biologically produced methane from hydrogen produced from surplus electricity can be used to substitute natural gas in the existing infrastructure. Current reactor types are not or are poorly optimized for flexible methanation. Therefore, this work proposes a new reactor type with a plug flow reactor (PFR) design. Simulations in COMSOL Multiphysics ® showed promising properties for operation in laminar flow. An experiment was conducted to support the simulation results and to determine the gas fraction of the novel reactor, which was measured to be 29\%. Based on these simulations and experimental results, the reactor was constructed as a 14 m long, 50 mm diameter tube with a meandering orientation. Data processing was established, and a step experiment was performed. In addition, a kLa of 1 h-1 was determined. The results revealed that the experimental outcomes of the type of flow and gas fractions are in line with the theoretical simulation. The new design shows promising properties for flexible methanation and will be tested.}, language = {en} }