@article{PhamStaat2014, author = {Pham, Phu Tinh and Staat, Manfred}, title = {FEM-based shakedown analysis of hardening structures}, series = {Asia Pacific journal on computational engineering}, journal = {Asia Pacific journal on computational engineering}, number = {1}, publisher = {SpringerOpen}, address = {Berlin}, issn = {2196-1166 (E-Journal)}, doi = {10.1186/2196-1166-1-4}, pages = {Article No. 4}, year = {2014}, abstract = {This paper develops a new finite element method (FEM)-based upper bound algorithm for limit and shakedown analysis of hardening structures by a direct plasticity method. The hardening model is a simple two-surface model of plasticity with a fixed bounding surface. The initial yield surface can translate inside the bounding surface, and it is bounded by one of the two equivalent conditions: (1) it always stays inside the bounding surface or (2) its centre cannot move outside the back-stress surface. The algorithm gives an effective tool to analyze the problems with a very high number of degree of freedom. Our numerical results are very close to the analytical solutions and numerical solutions in literature.}, language = {en} } @article{YangKriechbaumerAlbrachtetal.2014, author = {Yang, Peng-Fei and Kriechbaumer, Andreas and Albracht, Kirsten and Sanno, Maximilian and Ganse, Bergita and Koy, Timmo and Shang, Peng and br{\"u}ggemann, Gert-Peter and M{\"u}ller, Lars Peter and Rittweger, J{\"o}rn}, title = {A novel optical approach for assessing in vivo bone segment deformation and its application in muscle-bone relationship studies in humans}, series = {Journal of Orthopaedic Translation}, volume = {2}, journal = {Journal of Orthopaedic Translation}, number = {4}, publisher = {Elsevier}, address = {Singapore}, issn = {2214-0328}, doi = {10.1016/j.jot.2014.07.078}, pages = {238 -- 238}, year = {2014}, language = {en} } @incollection{Laack2014, author = {Laack, Walter van}, title = {Gefahren heutiger neurologischer Schlussfolgerungen f{\"u}r ethische Verantwortung}, series = {Ethik und Moral in Staat, Wirtschaft und Gesellschaft : 5. Rotary-Tag, 14.-15.2.2014, Kleve}, booktitle = {Ethik und Moral in Staat, Wirtschaft und Gesellschaft : 5. Rotary-Tag, 14.-15.2.2014, Kleve}, publisher = {Edition Virgines}, address = {Lingen}, organization = {Rotary-Tag <5, 2014, Kleve>}, isbn = {978-3-944011-21-9}, pages = {98 -- 114}, year = {2014}, language = {de} } @article{SchusserBaeckerKrischeretal.2014, author = {Schusser, Sebastian and B{\"a}cker, Matthias and Krischer, M. and Wenzel, L. and Leinhos, Marcel and Poghossian, Arshak and Biselli, Manfred and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Enzymatically catalyzed degradation of biodegradable polymers investigated by means of a semiconductor-based field-effect sensor}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.689}, pages = {1314 -- 1317}, year = {2014}, abstract = {A semiconductor field-effect device has been used for an enzymatically catalyzed degradation of biopolymers for the first time. This novel technique is capable to monitor the degradation process of multiple samples in situ and in real-time. As model system, the degradation of the biopolymer poly(D, L-lactic acid) has been monitored in the degradation medium containing the enzyme lipase from Rhizomucor miehei. The obtained results demonstrate the potential of capacitive field-effect sensors for degradation studies of biodegradable polymers.}, language = {en} } @inproceedings{JungStaatMueller2014, author = {Jung, Alexander and Staat, Manfred and M{\"u}ller, Wolfram}, title = {Optimization of the flight style in ski jumping}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20 - 25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20 - 25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {799 -- 810}, year = {2014}, language = {en} } @article{PoghossianSchoening2014, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Label-free sensing of biomolecules with field-effect devices for clinical applications}, series = {Electroanalysis}, volume = {26}, journal = {Electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109 (E-Journal); 1040-0397 (Print)}, doi = {10.1002/elan.201400073}, pages = {1197 -- 1213}, year = {2014}, abstract = {Among the variety of transducer concepts proposed for label-free detection of biomolecules, the semiconductor field-effect device (FED) is one of the most attractive platforms. As medical techniques continue to progress towards diagnostic and therapies based on biomarkers, the ability of FEDs for a label-free, fast and real-time detection of multiple pathogenic and physiologically relevant molecules with high specificity and sensitivity offers very promising prospects for their application in point-of-care and personalized medicine for an early diagnosis and treatment of diseases. The presented paper reviews recent advances and current trends in research and development of different FEDs for label-free, direct electrical detection of charged biomolecules by their intrinsic molecular charge. The authors are mainly focusing on the detection of the DNA hybridization event, antibody-antigen affinity reaction as well as clinically relevant biomolecules such as cardiac and cancer biomarkers.}, language = {en} } @article{LeinhosSchusserBaeckeretal.2014, author = {Leinhos, Marcel and Schusser, Sebastian and B{\"a}cker, Matthias and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Micromachined multi-parameter sensor chip for the control of polymer-degradation medium}, series = {Physica Status Solidi (A) : special issue on engineering and functional interfaces}, volume = {211}, journal = {Physica Status Solidi (A) : special issue on engineering and functional interfaces}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330364}, pages = {1346 -- 1351}, year = {2014}, abstract = {It is well known that the degradation environment can strongly influence the biodegradability and kinetics of biodegradation processes of polymers. Therefore, besides the monitoring of the degradation process, it is also necessary to control the medium in which the degradation takes place. In this work, a micromachined multi-parameter sensor chip for the control of the polymer-degradation medium has been developed. The chip combines a capacitive field-effect pH sensor, a four-electrode electrolyte-conductivity sensor and a thin-film Pt-temperature sensor. The results of characterization of individual sensors are presented. In addition, the multi-parameter sensor chip together with an impedimetric polymer-degradation sensor was simultaneously characterized in degradation solutions with different pH and electrolyte conductivity. The obtained results demonstrate the feasibility of the multi-parameter sensor chip for the control of the polymer-degradation medium.}, language = {en} } @article{HuckPoghossianBaeckeretal.2014, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Chaudhuri, S. and Zander, W. and Schubert, J. and Begoyan, V. K. and Buniatyan, V. V. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate}, series = {Sensors and actuators. B: Chemical}, journal = {Sensors and actuators. B: Chemical}, number = {198}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.02.103}, pages = {102 -- 109}, year = {2014}, language = {en} } @article{BaeckerKramerHucketal.2014, author = {B{\"a}cker, Matthias and Kramer, F. and Huck, Christina and Poghossian, Arshak and Bratov, A. and Abramova, N. and Sch{\"o}ning, Michael Josef}, title = {Planar and 3D interdigitated electrodes for biosensing applications: The impact of a dielectric barrier on the sensor properties}, series = {Physica Status Solidi (A) - Applications and Materials Science}, volume = {211}, journal = {Physica Status Solidi (A) - Applications and Materials Science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330416}, pages = {1357 -- 1363}, year = {2014}, abstract = {Planar and three-dimensional (3D) interdigitated electrodes (IDE) with electrode digits separated by an insulating barrier of different heights were electrochemically characterized and compared in terms of their sensing properties. Due to the impact of the surface resistance, both types of IDE structures display a non-linear behavior in low-ionic strength solutions. The experimental data were fitted to an electrical equivalent circuit and interpreted taking into account the surface-charge-governed properties. The effect of a charged polyelectrolyte layer electrostatically assembled onto the sensor surface on the surface resistance in solutions with different KCl concentration is studied. In case of the same electrode footprint, 3D-IDEs show a larger cell constant and a higher sensitivity to molecular adsorption than that of planar IDEs. The obtained results demonstrate the potential of 3D-IDEs as a new transducer structure for a direct label-free sensing of charged molecules.}, language = {en} } @article{MoseleyHalamekKrameretal.2014, author = {Moseley, Fiona and Halamek, Jan and Kramer, Friederike and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {An enzyme-based reversible CNOT logic gate realized in a flow system}, series = {Analyst}, volume = {139}, journal = {Analyst}, number = {8}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-5528 (E-Journal) ; 0003-2654 (Print)}, doi = {10.1039/C4AN00133H}, pages = {1839 -- 1842}, year = {2014}, abstract = {An enzyme system organized in a flow device was used to mimic a reversible Controlled NOT (CNOT) gate with two input and two output signals. Reversible conversion of NAD⁺ and NADH cofactors was used to perform a XOR logic operation, while biocatalytic hydrolysis of p-nitrophenyl phosphate resulted in an Identity operation working in parallel. The first biomolecular realization of a CNOT gate is promising for integration into complex biomolecular networks and future biosensor/biomedical applications.}, language = {en} }