@article{ValeroBung2016, author = {Valero, Daniel and Bung, Daniel Bernhard}, title = {Development of the interfacial air layer in the non-aerated region of high-velocity spillway flows: Instabilities growth, entrapped air and influence on the self-aeration onset}, series = {International Journal of Multiphase Flow}, volume = {84}, journal = {International Journal of Multiphase Flow}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0301-9322}, doi = {10.1016/j.ijmultiphaseflow.2016.04.012}, pages = {66 -- 74}, year = {2016}, abstract = {Self-aeration is traditionally explained by the water turbulent boundary layer outer edge intersection with the free surface. This paper presents a discussion on the commonly accepted hypothesis behind the computation of the critical point of self-aeration in spillway flows and a new formulation is proposed based on the existence of a developing air flow over the free surface. Upstream of the inception point of self-aeration, some surface roughening has been often reported in previous studies which consequently implies some entrapped air transport and air-water flows coupling. Such air flow is proven in this study by presenting measured air velocities and computing the air boundary layer thickness for a 1V:2H smooth chute flow. Additionally, the growth rate of free surface waves has been analysed by means of Ultrasonic Sensors measurements, obtaining also the entrapped air concentration. High-speed camera imaging has been used for qualitative study of the flow perturbations.}, language = {en} } @article{BayonValeroGarciaBartualetal.2016, author = {Bayon, Arnau and Valero, Daniel and Garcia-Bartual, Rafael and Vall{\´e}s-Mor{\´a}n, Francisco Jos{\´e} and L{\´o}pez-Jim{\´e}nez, P. Amparo}, title = {Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump}, series = {Environmental Modelling \& Software}, volume = {80}, journal = {Environmental Modelling \& Software}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1364-8152}, doi = {10.1016/j.envsoft.2016.02.018}, pages = {322 -- 335}, year = {2016}, abstract = {A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air-water interface, consequently aeration is modeled using an Eulerian-Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.}, language = {en} } @inproceedings{BungValero2015, author = {Bung, Daniel Bernhard and Valero, Daniel}, title = {Image processing for bubble image velocimetry in self-aerated flows}, series = {E-proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Hague, the Netherlands}, booktitle = {E-proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Hague, the Netherlands}, organization = {IAHR World Congress <36, 2015, Den Haag>}, pages = {1 -- 8}, year = {2015}, language = {en} } @inproceedings{OertelBalmesBung2015, author = {Oertel, Mario and Balmes, Jan P. and Bung, Daniel Bernhard}, title = {Numerical simulation of erosion processes on crossbar block ramps}, series = {E-proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Hague, the Netherlands}, booktitle = {E-proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Hague, the Netherlands}, organization = {IAHR World Congress <36, 2015, Den Haag>}, pages = {1 -- 8}, year = {2015}, language = {en} } @inproceedings{ValeroBung2015, author = {Valero, Daniel and Bung, Daniel Bernhard}, title = {Hybrid investigation of air transport processes in moderately sloped stepped spillway flows}, series = {E-proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Hague, the Netherlands}, booktitle = {E-proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Hague, the Netherlands}, organization = {IAHR World Congress <36, 2015, Den Haag>}, pages = {1 -- 10}, year = {2015}, language = {en} } @incollection{Bung2015, author = {Bung, Daniel Bernhard}, title = {Laboratory models of free-surface flows}, series = {Rivers - physical, fluvial and environmental processes}, booktitle = {Rivers - physical, fluvial and environmental processes}, editor = {Rowinski, Pawel}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-17718-2 ; 978-3-319-17719-9}, doi = {10.1007/978-3-319-17719-9_9}, pages = {213 -- 228}, year = {2015}, abstract = {Hydraulic modeling is the classical approach to investigate and describe complex fluid motion. Many empirical formulas in the literature used for the hydraulic design of river training measures and structures have been developed using experimental data from the laboratory. Although computer capacities have increased to a high level which allows to run complex numerical simulations on standard workstation nowadays, non-standard design of structures may still raise the need to perform physical model investigations. These investigations deliver insight into details of flow patterns and the effect of varying boundary conditions. Data from hydraulic model tests may be used for calibration of numerical models as well. As the field of hydraulic modeling is very complex, this chapter intends to give a short overview on capacities and limits of hydraulic modeling in regard to river flows and hydraulic structures only. The reader shall get a first idea of modeling principles and basic considerations. More detailed information can be found in the references.}, language = {en} } @incollection{ChansonBungMatos2015, author = {Chanson, Hubert and Bung, Daniel Bernhard and Matos, J.}, title = {Stepped spillways and cascades}, series = {Energy dissipation in hydraulic structures / Hubert Chanson (ed.)}, booktitle = {Energy dissipation in hydraulic structures / Hubert Chanson (ed.)}, publisher = {CRC Press}, address = {Boca Raton, Fla. [u.a.]}, isbn = {978-1-138-02755-8 (print) ; 978-1-315-68029-3 (e-Book)}, pages = {45 -- 64}, year = {2015}, language = {en} } @article{OertelBung2015, author = {Oertel, Mario and Bung, Daniel Bernhard}, title = {Stability and scour development of bed material on crossbar block ramps}, series = {International journal of sediment research}, volume = {30}, journal = {International journal of sediment research}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1001-6279}, doi = {10.1016/j.ijsrc.2014.12.003}, pages = {344 -- 350}, year = {2015}, abstract = {Block ramps are ecologically oriented drop structures with adequate energy dissipation and partially moderate flow velocities. A special case is given with crossbar block ramps, where the upstream and downstream level difference is reduced by a series of basins. To prevent the total structure from failing, the stability of single boulders within the crossbars and the bed material in between must be guaranteed. The present paper addresses the stability of bed material and scour development for various flow regimes. Any bed material erosion may affect the stability of the crossbar boulders, which in turn can result in major damages of the ramp. Therefore new design approaches are developed to choose an appropriate bed material size and to avoid failures of crossbar block ramp structures.}, language = {en} } @article{DoeringRegerKuhnhenneetal.2015, author = {D{\"o}ring, Bernd and Reger, Vitali and Kuhnhenne, Markus and Feldmann, Markus and Kesti, Jyrki and Lawson, Mark and Botti, Andrea}, title = {Steel solutions for enabling zero-energy buildings}, series = {Steel Construction - Design and Research}, volume = {8}, journal = {Steel Construction - Design and Research}, number = {3}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1867-0539}, doi = {10.1002/stco.201510029}, pages = {194 -- 200}, year = {2015}, language = {en} } @inproceedings{LopesBungLeandroetal.2015, author = {Lopes, Pedro and Bung, Daniel Bernhard and Leandro, Jorge and Carvalho, Rita F.}, title = {The effect of cross-waves in physical stepped spillway models}, series = {E-proceedings of the 36th IAHR World Congress ; 28 June - 3 July, 2015, The Hague, the Netherlands}, booktitle = {E-proceedings of the 36th IAHR World Congress ; 28 June - 3 July, 2015, The Hague, the Netherlands}, organization = {International Association for Hydro-Environment Engineering and Research}, pages = {1 -- 9}, year = {2015}, language = {en} } @inproceedings{Kirsch2009, author = {Kirsch, Ansgar}, title = {Experimental and numerical investigation of the face stability of shallow tunnels in sand}, series = {Safe tunnelling for the city and environment : proceedings of the World Tunnel Congress 2009, Budapest, Hungary, 23 to 28 September 2009 / organised by International Tunnelling and Underground Space Association ...}, booktitle = {Safe tunnelling for the city and environment : proceedings of the World Tunnel Congress 2009, Budapest, Hungary, 23 to 28 September 2009 / organised by International Tunnelling and Underground Space Association ...}, publisher = {Hungarian Tunnelling Association}, address = {Budapest}, organization = {World Tunnel Congress <2009, Budapest>}, pages = {1 -- 8}, year = {2009}, language = {en} } @inproceedings{FellinKingKirschetal.2009, author = {Fellin, Wolfgang and King, Julian and Kirsch, Ansgar and Oberguggenberger, Michael}, title = {Uncertainty modelling and sensitivity analysis of tunnel face stability}, series = {Safety, reliability and risk of structures, infrastructures and engineering systems : proceedings of the tenth International Conference on Structural Safety and Reliability (ICOSSAR 2009), Osaka, Japan, 13-17 September 2009 / ed.: Hitoshi Furuta ...}, booktitle = {Safety, reliability and risk of structures, infrastructures and engineering systems : proceedings of the tenth International Conference on Structural Safety and Reliability (ICOSSAR 2009), Osaka, Japan, 13-17 September 2009 / ed.: Hitoshi Furuta ...}, publisher = {CRC Pr.}, address = {Boca Raton, Fla. [u.a.]}, organization = {International Conference on Structural Safety and Reliability <10, 2009, Osaka>}, isbn = {978-0-415-47557-0}, pages = {112 -- 114}, year = {2009}, language = {en} } @inproceedings{KirschMarcher2010, author = {Kirsch, Ansgar and Marcher, Thomas}, title = {Numerical prediction of time-dependent rock swelling based on an example of a major tunnel project in Ontario/Canada}, series = {Numerical methods in geotechnical engineering : (NUMGE 2010) : proceedings of the seventh European Conference on Numerical Methods in Geotechnical Engineering, Trondheim, Norway, 2 - 4 June 2010 / ed. by Thomas Benz ...}, booktitle = {Numerical methods in geotechnical engineering : (NUMGE 2010) : proceedings of the seventh European Conference on Numerical Methods in Geotechnical Engineering, Trondheim, Norway, 2 - 4 June 2010 / ed. by Thomas Benz ...}, publisher = {Taylor and Francis}, address = {London}, organization = {European Conference on Numerical Methods in Geotechnical Engineering <7, 2010, Trondheim>}, isbn = {978-0-415-59239-0}, pages = {297 -- 302}, year = {2010}, language = {en} } @inproceedings{Kirsch2010, author = {Kirsch, Ansgar}, title = {Numerical investigation of the face stability of shallow tunnels in sand}, series = {Numerical methods in geotechnical engineering : (NUMGE 2010) : proceedings of the seventh European Conference on Numerical Methods in Geotechnical Engineering, Trondheim, Norway, 2 - 4 June 2010 / ed. by Thomas Benz ...}, booktitle = {Numerical methods in geotechnical engineering : (NUMGE 2010) : proceedings of the seventh European Conference on Numerical Methods in Geotechnical Engineering, Trondheim, Norway, 2 - 4 June 2010 / ed. by Thomas Benz ...}, publisher = {Taylor and Francis}, address = {London}, organization = {European Conference on Numerical Methods in Geotechnical Engineering <7, 2010, Trondheim>}, isbn = {978-0-415-59239-0}, pages = {779 -- 784}, year = {2010}, language = {en} } @article{KolymbasFellinKirsch2006, author = {Kolymbas, Dimitrios and Fellin, W. and Kirsch, Ansgar}, title = {Squeezing due to stress relaxation in foliated rock}, series = {International journal for numerical and analytical methods in geomechanics}, volume = {Vol. 30}, journal = {International journal for numerical and analytical methods in geomechanics}, number = {Iss. 13}, issn = {1096-9853 (E-Journal); 0363-9061 (Print)}, doi = {10.1002/nag.530}, pages = {1357 -- 1367}, year = {2006}, language = {en} } @inproceedings{KirschFelberMarcheretal.2014, author = {Kirsch, Ansgar and Felber, W. and Marcher, Thomas and Fuchs, W.}, title = {Geotechnical challenges during design and construction of a ski resort in Azerbaijan}, series = {Geotechnics of roads and railways : proceedings of the 15th Danube - European Conference on Geotechnical Engineering : 9-11 September 2014, Vienna, Austria}, booktitle = {Geotechnics of roads and railways : proceedings of the 15th Danube - European Conference on Geotechnical Engineering : 9-11 September 2014, Vienna, Austria}, publisher = {{\"O}IAV - {\"O}sterreichischer Ingenieur- und Architekten-Verein}, address = {Wien}, organization = {Danube - European Conference on Geotechnical Engineering <15, 2014, Wien>}, isbn = {978-3-902593-01-6}, pages = {757 -- 762}, year = {2014}, language = {en} } @article{Kirsch2010, author = {Kirsch, Ansgar}, title = {Experimental investigation of the face stability of shallow tunnels in sand}, series = {Acta Geotechnica}, volume = {5}, journal = {Acta Geotechnica}, number = {1}, publisher = {Springer}, address = {Berlin}, issn = {1861-1125}, doi = {10.1007/s11440-010-0110-7}, pages = {43 -- 62}, year = {2010}, abstract = {Various models have been proposed for the prediction of the necessary support pressure at the face of a shallow tunnel. To assess their quality, the collapse of a tunnel face was modelled with small-scale model tests at single gravity. The development of the failure mechanism and the support force at the face in dry sand were investigated. The observed displacement patterns show a negligible influence of overburden on the extent and evolution of the failure zone. The latter is significantly influenced, though, by the initial density of the sand: in dense sand a chimney-wedge-type collapse mechanism developed, which propagated towards the soil surface. Initially, loose sand did not show any discrete collapse mechanism. The necessary support force was neither influenced by the overburden nor the initial density. A comparison with quantitative predictions by several theoretical models showed that the measured necessary support pressure is overestimated by most of the models. Those by Vermeer/Ruse and L{\´e}ca/Dormieux showed the best agreement to the measurements.}, language = {en} } @article{FellinKingKirschetal.2010, author = {Fellin, Wolfgang and King, Julian and Kirsch, Ansgar and Oberguggenberger, Michael}, title = {Uncertainty modelling and sensitivity analysis of tunnel face stability}, series = {Structural safety}, volume = {32}, journal = {Structural safety}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-4730}, doi = {10.1016/j.strusafe.2010.06.001}, pages = {402 -- 410}, year = {2010}, abstract = {This paper proposes an approach to the choice and evaluation of engineering models with the aid of a typical application in geotechnics. An important issue in the construction of shallow tunnels, especially in weak ground conditions, is the tunnel face stability. Various theoretical and numerical models for predicting the necessary support pressure have been put forth in the literature. In this paper, we combine laboratory experiments performed at the University of Innsbruck with current methods of uncertainty and sensitivity analysis for assessing adequacy, predictive power and robustness of the models. The major issues are the handling of the twofold uncertainty of test results and of model predictions as well as the decision about what are the influential input parameters.}, language = {en} } @inproceedings{BungOertel2014, author = {Bung, Daniel Bernhard and Oertel, Mario}, title = {Manipulation of non-aerated cavity flow on a stepped spillway model}, series = {3rd European IAHR Congress : April 14 - 16, 2014, Porto}, booktitle = {3rd European IAHR Congress : April 14 - 16, 2014, Porto}, publisher = {Univ. of Porto}, address = {Porto}, organization = {International Association of Hydro-Environment Engineering and Research}, year = {2014}, language = {en} } @article{LeandroBungCarvalho2014, author = {Leandro, J. and Bung, Daniel Bernhard and Carvalho, R.}, title = {Measuring void fraction and velocity fields of a stepped spillway for skimming flow using non-intrusive methods}, series = {Experiments in fluids}, journal = {Experiments in fluids}, number = {55}, publisher = {Springer Nature}, address = {Heidelberg}, issn = {0723-4864 (Print) ; 1432-1114 (Online)}, doi = {10.1007/s00348-014-1732-6}, pages = {Art. 1732}, year = {2014}, language = {en} }