@article{GoettenHavermannBraunetal.2020, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Wind-tunnel and CFD investigations of UAV landing gears and turrets - Improvements in empirical drag estimation}, series = {Aerospace Science and Technology}, volume = {107}, journal = {Aerospace Science and Technology}, number = {Art. 106306}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1270-9638}, doi = {10.1016/j.ast.2020.106306}, year = {2020}, abstract = {This paper analyzes the drag characteristics of several landing gear and turret configurations that are representative of unmanned aircraft tricycle landing gears and sensor turrets. A variety of these components were constructed via 3D-printing and analyzed in a wind-tunnel measurement campaign. Both turrets and landing gears were attached to a modular fuselage that supported both isolated components and multiple components at a time. Selected cases were numerically investigated with a Reynolds-averaged Navier-Stokes approach that showed good accuracy when compared to wind-tunnel data. The drag of main gear struts could be significantly reduced via streamlining their cross-sectional shape and keeping load carrying capabilities similar. The attachment of wheels introduced interference effects that increased strut drag moderately but significantly increased wheel drag compared to isolated cases. Very similar behavior was identified for front landing gears. The drag of an electro-optical and infrared sensor turret was found to be much higher than compared to available data of a clean hemisphere-cylinder combination. This turret drag was merely influenced by geometrical features like sensor surfaces and the rotational mechanism. The new data of this study is used to develop simple drag estimation recommendations for main and front landing gear struts and wheels as well as sensor turrets. These recommendations take geometrical considerations and interference effects into account.}, language = {en} } @article{FaganBitzBjoerkmanBurtscheretal.2021, author = {Fagan, Andrew J. and Bitz, Andreas and Bj{\"o}rkman-Burtscher, Isabella M. and Collins, Christopher M. and Kimbrell, Vera and Raaijmakers, Alexander J. E.}, title = {7T MR Safety}, series = {Journal of Magnetic Resonance Imaging (JMRI)}, volume = {53}, journal = {Journal of Magnetic Resonance Imaging (JMRI)}, number = {2}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2586}, doi = {10.1002/jmri.27319}, pages = {333 -- 346}, year = {2021}, language = {en} } @article{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Calculation Methodology for Predicting Exhaust Mass Flows and Exhaust Temperature Profiles for Heavy-Duty Vehicles}, series = {SAE International Journal of Commercial Vehicles}, volume = {13}, journal = {SAE International Journal of Commercial Vehicles}, number = {2}, publisher = {SAE International}, address = {Warrendale, Pa.}, issn = {1946-3928}, doi = {10.4271/02-13-02-0009}, pages = {129 -- 143}, year = {2020}, abstract = {The predictive control of commercial vehicle energy management systems, such as vehicle thermal management or waste heat recovery (WHR) systems, are discussed on the basis of information sources from the field of environment recognition and in combination with the determination of the vehicle system condition. In this article, a mathematical method for predicting the exhaust gas mass flow and the exhaust gas temperature is presented based on driving data of a heavy-duty vehicle. The prediction refers to the conditions of the exhaust gas at the inlet of the exhaust gas recirculation (EGR) cooler and at the outlet of the exhaust gas aftertreatment system (EAT). The heavy-duty vehicle was operated on the motorway to investigate the characteristic operational profile. In addition to the use of road gradient profile data, an evaluation of the continuously recorded distance signal, which represents the distance between the test vehicle and the road user ahead, is included in the prediction model. Using a Fourier analysis, the trajectory of the vehicle speed is determined for a defined prediction horizon. To verify the method, a holistic simulation model consisting of several hierarchically structured submodels has been developed. A map-based submodel of a combustion engine is used to determine the EGR and EAT exhaust gas mass flows and exhaust gas temperature profiles. All simulation results are validated on the basis of the recorded vehicle and environmental data. Deviations from the predicted values are analyzed and discussed.}, language = {en} } @inproceedings{BergmannGoettenBraunetal.2022, author = {Bergmann, Ole and G{\"o}tten, Falk and Braun, Carsten and Janser, Frank}, title = {Comparison and evaluation of blade element methods against RANS simulations and test data}, series = {CEAS Aeronautical Journal}, volume = {13}, booktitle = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-022-00579-1}, pages = {535 -- 557}, year = {2022}, abstract = {This paper compares several blade element theory (BET) method-based propeller simulation tools, including an evaluation against static propeller ground tests and high-fidelity Reynolds-Average Navier Stokes (RANS) simulations. Two proprietary propeller geometries for paraglider applications are analysed in static and flight conditions. The RANS simulations are validated with the static test data and used as a reference for comparing the BET in flight conditions. The comparison includes the analysis of varying 2D aerodynamic airfoil parameters and different induced velocity calculation methods. The evaluation of the BET propeller simulation tools shows the strength of the BET tools compared to RANS simulations. The RANS simulations underpredict static experimental data within 10\% relative error, while appropriate BET tools overpredict the RANS results by 15-20\% relative error. A variation in 2D aerodynamic data depicts the need for highly accurate 2D data for accurate BET results. The nonlinear BET coupled with XFOIL for the 2D aerodynamic data matches best with RANS in static operation and flight conditions. The novel BET tool PropCODE combines both approaches and offers further correction models for highly accurate static and flight condition results.}, language = {en} } @inproceedings{GoettenFingerHavermannetal.2020, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Full Configuration Drag Estimation of Small-to-Medium Range UAVs and its Impact on Initial Sizing Optimization}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, year = {2020}, language = {en} } @inproceedings{HippeFingerGoettenetal.2020, author = {Hippe, Jonas and Finger, Felix and G{\"o}tten, Falk and Braun, Carsten}, title = {Propulsion System Qualification of a 25 kg VTOL-UAV: Hover Performance of Single and Coaxial Rotors and Wind-Tunnel Experiments on Cruise Propellers}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, year = {2020}, language = {en} } @inproceedings{GeibenGoettenHavermann2020, author = {Geiben, Benedikt and G{\"o}tten, Falk and Havermann, Marc}, title = {Aerodynamic analysis of a winged sub-orbital spaceplane}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, year = {2020}, language = {en} } @article{FingerBraunBil2020, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft}, series = {Journal of Aircraft}, volume = {57}, journal = {Journal of Aircraft}, number = {5}, publisher = {AIAA}, address = {Reston, Va.}, issn = {1533-3868}, doi = {10.2514/1.C035897}, year = {2020}, abstract = {Until electric energy storage systems are ready to allow fully electric aircraft, the combination of combustion engine and electric motor as a hybrid-electric propulsion system seems to be a promising intermediate solution. Consequently, the design space for future aircraft is expanded considerably, as serial hybrid-electric, parallel hybrid-electric, fully electric, and conventional propulsion systems must all be considered. While the best propulsion system depends on a multitude of requirements and considerations, trends can be observed for certain types of aircraft and certain types of missions. This Paper provides insight into some factors that drive a new design toward either conventional or hybrid propulsion systems. General aviation aircraft, regional transport aircraft vertical takeoff and landing air taxis, and unmanned aerial vehicles are chosen as case studies. Typical missions for each class are considered, and the aircraft are analyzed regarding their takeoff mass and primary energy consumption. For these case studies, a high-level approach is chosen, using an initial sizing methodology. Only parallel-hybrid-electric powertrains are taken into account. Aeropropulsive interaction effects are neglected. Results indicate that hybrid-electric propulsion systems should be considered if the propulsion system is sized by short-duration power constraints. However, if the propulsion system is sized by a continuous power requirement, hybrid-electric systems offer hardly any benefit.}, language = {en} } @inproceedings{ChavezBermudezWollert2019, author = {Chavez Bermudez, Victor Francisco and Wollert, J{\"o}rg}, title = {Gateway for Automation Controllers and Cloud based Voice Recognition Services}, series = {KommA, 10. Jahreskolloquium Kommunikation in der Automation}, booktitle = {KommA, 10. Jahreskolloquium Kommunikation in der Automation}, publisher = {Institut f{\"u}r Automation und Kommunikation}, address = {Magdeburg}, organization = {KommA, 2019, Jahreskolloquium Kommunikation in der Automation, 10., Lemgo, DE, 2019-11-20 - 2019-11-21}, isbn = {978-3-944722-85-6}, pages = {1 -- 8}, year = {2019}, language = {en} } @incollection{GiresiniButenweg2019, author = {Giresini, Linda and Butenweg, Christoph}, title = {Earthquake resistant design of structures according to Eurocode 8}, series = {Structural Dynamics with Applications in Earthquake and Wind Engineering}, booktitle = {Structural Dynamics with Applications in Earthquake and Wind Engineering}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-57550-5 (Online)}, doi = {10.1007/978-3-662-57550-5_4}, pages = {197 -- 358}, year = {2019}, abstract = {The chapter initially provides a summary of the contents of Eurocode 8, its aim being to offer both to the students and to practising engineers an easy introduction into the calculation and dimensioning procedures of this earthquake code. Specifically, the general rules for earthquake-resistant structures, the definition of design response spectra taking behaviour and importance factors into account, the application of linear and non-linear calculation methods and the structural safety verifications at the serviceability and ultimate limit state are presented. The application of linear and non-linear calculation methods and corresponding seismic design rules is demonstrated on practical examples for reinforced concrete, steel and masonry buildings. Furthermore, the seismic assessment of existing buildings is discussed and illustrated on the example of a typical historical masonry building in Italy. The examples are worked out in detail and each step of the design process, from the preliminary analysis to the final design, is explained in detail.}, language = {en} }