@article{StaatHeitzer2002, author = {Staat, Manfred and Heitzer, M.}, title = {Limit and Shakedown Analysis with Uncertain Data}, series = {Stochastic optimization techniques : numerical methods and technical applications / Marti, K. [ed]}, journal = {Stochastic optimization techniques : numerical methods and technical applications / Marti, K. [ed]}, publisher = {Springer}, address = {Heidelberg}, isbn = {3-540-42889-5}, pages = {241 -- 254}, year = {2002}, language = {en} } @article{StaatHeitzer2003, author = {Staat, Manfred and Heitzer, M.}, title = {Probabilistic limit and shakedown problems}, series = {Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach. NIC Series Vol. 15 / Ed. by Staat, M; Heitzer, M.}, journal = {Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach. NIC Series Vol. 15 / Ed. by Staat, M; Heitzer, M.}, publisher = {John von Neumann Institute for Computing (NIC)}, address = {J{\"u}lich}, isbn = {3-00-010001-6}, pages = {217 -- 268}, year = {2003}, language = {en} } @article{StaatBaroudTopcuetal.2008, author = {Staat, Manfred and Baroud, G. and Topcu, M. and Sponagel, Stefan}, title = {Soft Materials in Technology and Biology - Characteristics, Properties, and Parameter Identification}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {253 -- 315}, year = {2008}, language = {en} } @article{Staat2004, author = {Staat, Manfred}, title = {Plastic collapse analysis of longitudinally flawed pipes and vessels}, series = {Nuclear Engineering and Design. 234 (2004), H. 1-3}, journal = {Nuclear Engineering and Design. 234 (2004), H. 1-3}, isbn = {0029-5493}, pages = {25 -- 43}, year = {2004}, language = {en} } @article{Staat2005, author = {Staat, Manfred}, title = {Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels}, series = {International Journal of Pressure Vessels and Piping. 82 (2005), H. 3}, journal = {International Journal of Pressure Vessels and Piping. 82 (2005), H. 3}, isbn = {0308-0161}, pages = {217 -- 225}, year = {2005}, language = {en} } @article{Staat2005, author = {Staat, Manfred}, title = {Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels}, year = {2005}, abstract = {Limit loads can be calculated with the finite element method (FEM) for any component, defect geometry, and loading. FEM suggests that published long crack limit formulae for axial defects under-estimate the burst pressure for internal surface defects in thick pipes while limit loads are not conservative for deep cracks and for pressure loaded crack-faces. Very deep cracks have a residual strength, which is modelled by a global collapse load. These observations are combined to derive new analytical local and global collapse loads. The global collapse loads are close to FEM limit analyses for all crack dimensions.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{Staat2004, author = {Staat, Manfred}, title = {Plastic collapse analysis of longitudinally flawed pipes and vessels}, year = {2004}, abstract = {Improved collapse loads of thick-walled, crack containing pipes and vessels are suggested. Very deep cracks have a residual strength which is better modelled by a global limit load. In all burst tests, the ductility of pressure vessel steels was sufficiently high whereby the burst pressure could be predicted by limit analysis with no need to apply fracture mechanics. The relative prognosis error increases however, for long and deep defects due to uncertainties of geometry and strength data.}, subject = {Druckbeh{\"a}lter}, language = {en} } @article{Staat2003, author = {Staat, Manfred}, title = {Shakedown and ratchetting under tension-torsion loadings: analysis and experiments}, year = {2003}, abstract = {Structural design analyses are conducted with the aim of verifying the exclusion of ratchetting. To this end it is important to make a clear distinction between the shakedown range and the ratchetting range. The performed experiment comprised a hollow tension specimen which was subjected to alternating axial forces, superimposed with constant moments. First, a series of uniaxial tests has been carried out in order to calibrate a bounded kinematic hardening rule. The load parameters have been selected on the basis of previous shakedown analyses with the PERMAS code using a kinematic hardening material model. It is shown that this shakedown analysis gives reasonable agreement between the experimental and the numerical results. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis.}, subject = {Einspielen }, language = {en} } @article{Staat2005, author = {Staat, Manfred}, title = {Direct finite element route for design-by-analysis of pressure components}, year = {2005}, abstract = {In the new European standard for unfired pressure vessels, EN 13445-3, there are two approaches for carrying out a Design-by-Analysis that cover both the stress categorization method (Annex C) and the direct route method (Annex B) for a check against global plastic deformation and against progressive plastic deformation. This paper presents the direct route in the language of limit and shakedown analysis. This approach leads to an optimization problem. Its solution with Finite Element Analysis is demonstrated for mechanical and thermal actions. One observation from the examples is that the so-called 3f (3Sm) criterion fails to be a reliable check against progressive plastic deformation. Precise conditions are given, which greatly restrict the applicability of the 3f criterion.}, subject = {Einspielen }, language = {en} } @article{Staat2002, author = {Staat, Manfred}, title = {Some Achievements of the European Project LISA for FEM Based Limit and Shakedown Analysis}, series = {Computational mechanics : developments and applications, 2002 : presented at the 2002 ASME Pressure Vessels and Piping Conference, Vancouver, British Columbia, Canada, August 5 - 9. / Badie, N. [ed]}, journal = {Computational mechanics : developments and applications, 2002 : presented at the 2002 ASME Pressure Vessels and Piping Conference, Vancouver, British Columbia, Canada, August 5 - 9. / Badie, N. [ed]}, publisher = {American Society of Mechanical Engineers}, address = {New York}, isbn = {0791846520}, pages = {177 -- 185}, year = {2002}, language = {en} }