@article{MolinnusIkenJohnenetal.2022, author = {Molinnus, Denise and Iken, Heiko and Johnen, Anna Lynn and Richstein, Benjamin and Hellmich, Lena and Poghossian, Arshak and Knoch, Joachim and Sch{\"o}ning, Michael Josef}, title = {Miniaturized pH-Sensitive Field-Effect Capacitors with Ultrathin Ta₂O₅ Films Prepared by Atomic Layer Deposition}, series = {physica status solidi (a) applications and materials science}, volume = {219}, journal = {physica status solidi (a) applications and materials science}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202100660}, pages = {7 Seiten}, year = {2022}, abstract = {Miniaturized electrolyte-insulator-semiconductor capacitors (EISCAPs) with ultrathin gate insulators have been studied in terms of their pH-sensitive sensor characteristics: three different EISCAP systems consisting of Al-p-Si-Ta2O5(5 nm), Al-p-Si-Si3N4(1 or 2 nm)-Ta2O5 (5 nm), and Al-p-Si-SiO2(3.6 nm)-Ta2O5(5 nm) layer structures are characterized in buffer solution with different pH values by means of capacitance-voltage and constant capacitance method. The SiO2 and Si3N4 gate insulators are deposited by rapid thermal oxidation and rapid thermal nitridation, respectively, whereas the Ta2O5 film is prepared by atomic layer deposition. All EISCAP systems have a clear pH response, favoring the stacked gate insulators SiO2-Ta2O5 when considering the overall sensor characteristics, while the Si3N4(1 nm)-Ta2O5 stack delivers the largest accumulation capacitance (due to the lower equivalent oxide thickness) and a higher steepness in the slope of the capacitance-voltage curve among the studied stacked gate insulator systems.}, language = {en} } @article{BhattaraiHorbachStaatetal.2022, author = {Bhattarai, Aroj and Horbach, Andreas and Staat, Manfred and Kowalczyk, Wojciech and Tran, Thanh Ngoc}, title = {Virgin passive colon biomechanics and a literature review of active contraction constitutive models}, series = {Biomechanics}, volume = {2}, journal = {Biomechanics}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2673-7078}, doi = {10.3390/biomechanics2020013}, pages = {138 -- 157}, year = {2022}, abstract = {The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel-Gasser-Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill's three-element model, Murphy's four-state cross-bridge chemical kinetic model and Huxley's sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine.}, language = {en} } @article{DefosseKleinschmidtSchmutzetal.2022, author = {Defosse, Jerome and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Staat, Manfred and Gatzweiler, Karl-Heinz and Wappler, Frank and Schieren, Mark}, title = {Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study}, series = {Journal of Cardiothoracic and Vascular Anesthesia}, volume = {36}, journal = {Journal of Cardiothoracic and Vascular Anesthesia}, number = {8, Part B}, publisher = {Elsevier}, address = {New York, NY}, issn = {1053-0770}, doi = {10.1053/j.jvca.2022.02.017}, pages = {3021 -- 3027}, year = {2022}, language = {en} } @article{MandekarHollandThielenetal.2022, author = {Mandekar, Swati and Holland, Abigail and Thielen, Moritz and Behbahani, Mehdi and Melnykowycz, Mark}, title = {Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22041568}, pages = {1 -- 19}, year = {2022}, abstract = {Wearable EEG has gained popularity in recent years driven by promising uses outside of clinics and research. The ubiquitous application of continuous EEG requires unobtrusive form-factors that are easily acceptable by the end-users. In this progression, wearable EEG systems have been moving from full scalp to forehead and recently to the ear. The aim of this study is to demonstrate that emerging ear-EEG provides similar impedance and signal properties as established forehead EEG. EEG data using eyes-open and closed alpha paradigm were acquired from ten healthy subjects using generic earpieces fitted with three custom-made electrodes and a forehead electrode (at Fpx) after impedance analysis. Inter-subject variability in in-ear electrode impedance ranged from 20 kΩ to 25 kΩ at 10 Hz. Signal quality was comparable with an SNR of 6 for in-ear and 8 for forehead electrodes. Alpha attenuation was significant during the eyes-open condition in all in-ear electrodes, and it followed the structure of power spectral density plots of forehead electrodes, with the Pearson correlation coefficient of 0.92 between in-ear locations ELE (Left Ear Superior) and ERE (Right Ear Superior) and forehead locations, Fp1 and Fp2, respectively. The results indicate that in-ear EEG is an unobtrusive alternative in terms of impedance, signal properties and information content to established forehead EEG.}, language = {en} } @article{TopcuMadabhushiStaat2022, author = {Top{\c{c}}u, Murat and Madabhushi, Gopal S.P. and Staat, Manfred}, title = {A generalized shear-lag theory for elastic stress transfer between matrix and fibres having a variable radius}, series = {International Journal of Solids and Structures}, volume = {239-240}, journal = {International Journal of Solids and Structures}, number = {Art. No. 111464}, publisher = {Elsevier}, address = {New York, NY}, issn = {0020-7683}, doi = {10.1016/j.ijsolstr.2022.111464}, year = {2022}, abstract = {A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP.}, language = {en} } @article{PoettgenEdererAltherretal.2015, author = {P{\"o}ttgen, Philipp and Ederer, Thorsten and Altherr, Lena and Pelz, Peter F.}, title = {Developing a control strategy for booster stations under uncertain load}, series = {Applied Mechanics and Materials}, volume = {807}, journal = {Applied Mechanics and Materials}, number = {807}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, isbn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.807.241}, pages = {241 -- 246}, year = {2015}, abstract = {Booster stations can fulfill a varying pressure demand with high energy-efficiency, because individual pumps can be deactivated at smaller loads. Although this is a seemingly simple approach, it is not easy to decide precisely when to activate or deactivate pumps. Contemporary activation controls derive the switching points from the current volume flow through the system. However, it is not measured directly for various reasons. Instead, the controller estimates the flow based on other system properties. This causes further uncertainty for the switching decision. In this paper, we present a method to find a robust, yet energy-efficient activation strategy.}, language = {en} } @article{GrundlachBaumannEngelmann2021, author = {Grundlach, Michael and Baumann, Martin and Engelmann, Ulrich M.}, title = {How Multimodal Examinations Can Increase Sustainable Student Gain by Aligning Teaching and Assessment}, series = {Current Directions in Biomedical Engineering}, volume = {7}, journal = {Current Directions in Biomedical Engineering}, number = {7/2}, editor = {D{\"o}ssel, Olaf}, publisher = {De Gruyter}, address = {Berlin}, isbn = {2364-5504}, doi = {10.1515/cdbme-2021-2019}, pages = {73 -- 76}, year = {2021}, abstract = {Modern industry and multi-discipline projects require highly trained individuals with resilient science and engineering back-grounds. Graduates must be able to agilely apply excellent theoretical knowledge in their subject matter as well as essential practical "hands-on" knowledge of diverse working processes to solve complex problems. To meet these demands, university education follows the concept of Constructive Alignment and thus increasingly adopts the teaching of necessary practical skills to the actual industry requirements and assessment routines. However, a systematic approach to coherently align these three central teaching demands is strangely absent from current university curricula. We demonstrate the feasibility of implementing practical assessments in a regular theory-based examination, thus defining the term "blended assessment". We assessed a course for natural science and engineering students pursuing a career in biomedical engineering, and evaluated the benefit of blended assessment exams for students and lecturers. Our controlled study assessed the physiological background of electrocardiograms (ECGs), the practical measurement of ECG curves, and their interpretation of basic pathologic alterations. To study on long time effects, students have been assessed on the topic twice with a time lag of 6 months. Our findings suggest a significant improvement in student gain with respect to practical skills and theoretical knowledge. The results of the reassessments support these outcomes. From the lecturers' point of view, blended assessment complements practical training courses while keeping organizational effort manageable. We consider blended assessment a viable tool for providing an improved student gain, industry-ready education format that should be evaluated and established further to prepare university graduates optimally for their future careers.}, language = {en} } @article{WerfelGuenthnerHapfelmeieretal.2022, author = {Werfel, Stanislas and G{\"u}nthner, Roman and Hapfelmeier, Alexander and Hanssen, Henner and Kotliar, Konstantin and Heemann, Uwe and Schmaderer, Christoph}, title = {Identification of cardiovascular high-risk groups from dynamic retinal vessel signals using untargeted machine learning}, series = {Cardiovascular Research}, volume = {118}, journal = {Cardiovascular Research}, number = {2}, editor = {Guzik, Tomasz J.}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0008-6363}, doi = {10.1093/cvr/cvab040}, pages = {612 -- 621}, year = {2022}, abstract = {Dynamic retinal vessel analysis (DVA) provides a non-invasive way to assess microvascular function in patients and potentially to improve predictions of individual cardiovascular (CV) risk. The aim of our study was to use untargeted machine learning on DVA in order to improve CV mortality prediction and identify corresponding response alterations.}, language = {en} } @article{AlbannaConzenWeissetal.2021, author = {Albanna, Walid and Conzen, Catharina and Weiss, Miriam and Seyfried, Katharina and Kotliar, Konstantin and Schmidt, Tobias Philip and Kuerten, David and Hescheler, J{\"u}rgen and Bruecken, Anne and Schmidt-Trucks{\"a}ss, Arno and Neumaier, Felix and Wiesmann, Martin and Clusmann, Hans and Schubert, Gerrit Alexander}, title = {Non-invasive assessment of neurovascular coupling after aneurysmal subarachnoid hemorrhage: a prospective observational trial using retinal vessel analysis}, series = {Frontiers in Neurology}, volume = {12}, journal = {Frontiers in Neurology}, number = {12}, issn = {1664-2295}, doi = {10.3389/fneur.2021.690183}, pages = {1 -- 15}, year = {2021}, abstract = {Delayed cerebral ischemia (DCI) is a common complication after aneurysmal subarachnoid hemorrhage (aSAH) and can lead to infarction and poor clinical outcome. The underlying mechanisms are still incompletely understood, but animal models indicate that vasoactive metabolites and inflammatory cytokines produced within the subarachnoid space may progressively impair and partially invert neurovascular coupling (NVC) in the brain. Because cerebral and retinal microvasculature are governed by comparable regulatory mechanisms and may be connected by perivascular pathways, retinal vascular changes are increasingly recognized as a potential surrogate for altered NVC in the brain. Here, we used non-invasive retinal vessel analysis (RVA) to assess microvascular function in aSAH patients at different times after the ictus.}, language = {en} } @article{KuertenKotliarFuestetal.2021, author = {Kuerten, David and Kotliar, Konstantin and Fuest, Matthias and Walter, Peter and Hollstein, Muriel and Plange, Niklas}, title = {Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study}, series = {International Ophthalmology}, volume = {41}, journal = {International Ophthalmology}, number = {41}, editor = {Neri, Piergiorgio}, publisher = {Springer}, address = {Berlin}, isbn = {1573-2630}, doi = {10.1007/s10792-021-01876-0}, pages = {3109 -- 3119}, year = {2021}, abstract = {Purpose Vascular risk factors and ocular perfusion are heatedly discussed in the pathogenesis of glaucoma. The retinal vessel analyzer (RVA, IMEDOS Systems, Germany) allows noninvasive measurement of retinal vessel regulation. Significant differences especially in the veins between healthy subjects and patients suffering from glaucoma were previously reported. In this pilot-study we investigated if localized vascular regulation is altered in glaucoma patients with altitudinal visual field defect asymmetry. Methods 15 eyes of 12 glaucoma patients with advanced altitudinal visual field defect asymmetry were included. The mean defect was calculated for each hemisphere separately (-20.99 ± 10.49 pro- found hemispheric visual field defect vs -7.36 ± 3.97 dB less profound hemisphere). After pupil dilation, RVA measurements of retinal arteries and veins were conducted using the standard protocol. The superior and inferior retinal vessel reactivity were measured consecutively in each eye. Results Significant differences were recorded in venous vessel constriction after flicker light stimulation and overall amplitude of the reaction (p \ 0.04 and p \ 0.02 respectively) in-between the hemispheres spheres. Vessel reaction was higher in the hemisphere corresponding to the more advanced visual field defect. Arterial diameters reacted similarly, failing to reach statistical significance. Conclusion Localized retinal vessel regulation is significantly altered in glaucoma patients with asymmetri altitudinal visual field defects. Veins supplying the hemisphere concordant to a less profound visual field defect show diminished diameter changes. Vascular dysregulation might be particularly important in early glaucoma stages prior to a significant visual field defect.}, language = {en} } @article{HunkerGossmannRamanetal.2021, author = {Hunker, Jan L. and Gossmann, Matthias and Raman, Aravind Hariharan and Linder, Peter}, title = {Artificial neural networks in cardiac safety assessment: Classification of chemotherapeutic compound effects on hiPSC-derived cardiomyocyte contractility}, series = {Journal of Pharmacological and Toxicological Methods}, volume = {111}, journal = {Journal of Pharmacological and Toxicological Methods}, number = {Article number 107044}, publisher = {Elsevier}, address = {New York}, issn = {1056-8719}, doi = {10.1016/j.vascn.2021.107044}, year = {2021}, language = {en} } @article{TemizArtmannKurulgandemirciFıratetal.2021, author = {Temiz Artmann, Ayseg{\"u}l and Kurulgan demirci, Eylem and F{\i}rat, Ipek Seda and Oflaz, Hakan and Artmann, Gerhard}, title = {Recombinant activated protein C (rhAPC) affects lipopolysaccharide-induced mechanical compliance changes and beat frequency of mESC-derived cardiomyocyte monolayers}, series = {SHOCK}, journal = {SHOCK}, publisher = {Wolters Kluwer}, address = {K{\"o}ln}, issn = {1540-0514}, doi = {10.1097/SHK.0000000000001845}, year = {2021}, language = {en} } @article{HeinkeKnickerAlbracht2021, author = {Heinke, Lars N. and Knicker, Axel J. and Albracht, Kirsten}, title = {Test-retest reliability of the internal shoulder rotator muscles' stretch reflex in healthy men}, series = {Journal of Electromyography and Kinesiology}, volume = {62}, journal = {Journal of Electromyography and Kinesiology}, number = {Article 102611}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2021.102611}, year = {2021}, abstract = {Until now the reproducibility of the short latency stretch reflex of the internal rotator muscles of the glenohumeral joint has not been identified. Twenty-three healthy male participants performed three sets of external shoulder rotation stretches with various pre-activation levels on two different dates of measurement to assess test-retest reliability. All stretches were applied with a dynamometer acceleration of 104°/s2 and a velocity of 150°/s. Electromyographical response was measured via surface EMG. Reflex latencies showed a pre-activation effect (ƞ2 = 0,355). ICC ranged from 0,735 to 0,909 indicating an overall "good" relative reliability. SRD 95\% lay between ±7,0 to ±12,3 ms.. The reflex gain showed overall poor test-retest reproducibility. The chosen methodological approach presented a suitable test protocol for shoulder muscles stretch reflex latency evaluation. A proof-of-concept study to validate the presented methodical approach in shoulder involvement including subjects with clinically relevant conditions is recommended.}, language = {en} } @article{AlexyukBogoyavlenskiyAlexyuketal.2021, author = {Alexyuk, Madina and Bogoyavlenskiy, Andrey and Alexyuk, Pavel and Moldakhanov, Yergali and Berezin, Vladimir and Digel, Ilya}, title = {Epipelagic microbiome of the Small Aral Sea: Metagenomic structure and ecological diversity}, series = {MicrobiologyOpen}, volume = {10}, journal = {MicrobiologyOpen}, number = {1}, publisher = {Wiley}, address = {Weinheim}, issn = {2045-8827}, doi = {10.1002/mbo3.1142}, pages = {1 -- 10}, year = {2021}, abstract = {Microbial diversity studies regarding the aquatic communities that experienced or are experiencing environmental problems are essential for the comprehension of the remediation dynamics. In this pilot study, we present data on the phylogenetic and ecological structure of microorganisms from epipelagic water samples collected in the Small Aral Sea (SAS). The raw data were generated by massive parallel sequencing using the shotgun approach. As expected, most of the identified DNA sequences belonged to Terrabacteria and Actinobacteria (40\% and 37\% of the total reads, respectively). The occurrence of Deinococcus-Thermus, Armatimonadetes, Chloroflexi in the epipelagic SAS waters was less anticipated. Surprising was also the detection of sequences, which are characteristic for strict anaerobes—Ignavibacteria, hydrogen-oxidizing bacteria, and archaeal methanogenic species. We suppose that the observed very broad range of phylogenetic and ecological features displayed by the SAS reads demonstrates a more intensive mixing of water masses originating from diverse ecological niches of the Aral-Syr Darya River basin than presumed before.}, language = {en} } @article{JungStaat2020, author = {Jung, Alexander and Staat, Manfred}, title = {Erratum to "Modeling and simulation of human induced pluripotent stem cell-derived cardiac tissue" [GAMM-Mitteilungen, (2019), 42, 4, 10.1002/gamm.201900002]}, series = {GAMM-Mitteilungen}, volume = {43}, journal = {GAMM-Mitteilungen}, number = {4}, publisher = {Wiley-VCH GmbH}, address = {Weinheim}, issn = {1522-2608}, doi = {10.1002/gamm.202000011}, year = {2020}, language = {en} } @article{HeelDiktaBraekers2021, author = {Heel, Mareike van and Dikta, Gerhard and Braekers, Roel}, title = {Bootstrap based goodness‑of‑fit tests for binary multivariate regression models}, series = {Journal of the Korean Statistical Society}, volume = {51}, journal = {Journal of the Korean Statistical Society}, publisher = {Springer Nature}, address = {Singapur}, issn = {2005-2863 (Online)}, doi = {10.1007/s42952-021-00142-4}, pages = {28 Seiten}, year = {2021}, abstract = {We consider a binary multivariate regression model where the conditional expectation of a binary variable given a higher-dimensional input variable belongs to a parametric family. Based on this, we introduce a model-based bootstrap (MBB) for higher-dimensional input variables. This test can be used to check whether a sequence of independent and identically distributed observations belongs to such a parametric family. The approach is based on the empirical residual process introduced by Stute (Ann Statist 25:613-641, 1997). In contrast to Stute and Zhu's approach (2002) Stute \& Zhu (Scandinavian J Statist 29:535-545, 2002), a transformation is not required. Thus, any problems associated with non-parametric regression estimation are avoided. As a result, the MBB method is much easier for users to implement. To illustrate the power of the MBB based tests, a small simulation study is performed. Compared to the approach of Stute \& Zhu (Scandinavian J Statist 29:535-545, 2002), the simulations indicate a slightly improved power of the MBB based method. Finally, both methods are applied to a real data set.}, language = {en} } @article{BrockhausBehbahaniMurisetal.2021, author = {Brockhaus, Moritz K. and Behbahani, Mehdi and Muris, Farina and Jansen, Sebastian V. and Schmitz- Rode, Thomas and Steinseifer, Ulrich and Clauser, Johanna C.}, title = {In vitro thrombogenicity testing of pulsatile mechanical circulatory support systems: Design and proof-of-concept}, series = {Artificial Organs}, volume = {45}, journal = {Artificial Organs}, number = {12}, publisher = {Wiley}, address = {Weinheim}, issn = {1525-1594}, doi = {10.1111/aor.14046}, pages = {1513 -- 1521}, year = {2021}, abstract = {Thrombogenic complications are a main issue in mechanical circulatory support (MCS). There is no validated in vitro method available to quantitatively assess the thrombogenic performance of pulsatile MCS devices under realistic hemodynamic conditions. The aim of this study is to propose a method to evaluate the thrombogenic potential of new designs without the use of complex in-vivo trials. This study presents a novel in vitro method for reproducible thrombogenicity testing of pulsatile MCS systems using low molecular weight heparinized porcine blood. Blood parameters are continuously measured with full blood thromboelastometry (ROTEM; EXTEM, FIBTEM and a custom-made analysis HEPNATEM). Thrombus formation is optically observed after four hours of testing. The results of three experiments are presented each with two parallel loops. The area of thrombus formation inside the MCS device was reproducible. The implantation of a filter inside the loop catches embolizing thrombi without a measurable increase of platelet activation, allowing conclusions of the place of origin of thrombi inside the device. EXTEM and FIBTEM parameters such as clotting velocity (α) and maximum clot firmness (MCF) show a total decrease by around 6\% with a characteristic kink after 180 minutes. HEPNATEM α and MCF rise within the first 180 minutes indicate a continuously increasing activation level of coagulation. After 180 minutes, the consumption of clotting factors prevails, resulting in a decrease of α and MCF. With the designed mock loop and the presented protocol we are able to identify thrombogenic hot spots inside a pulsatile pump and characterize their thrombogenic potential.}, language = {en} } @article{NeumaierWeissVeldemanetal.2021, author = {Neumaier, Felix and Weiss, Miriam and Veldeman, Michael and Kotliar, Konstantin and Wiesmann, Martin and Schulze-Steinen, Henna and H{\"o}llig, Anke and Clusmann, Hans and Schubert, Gerrit Alexander and Albanna, Walid}, title = {Changes in endogenous daytime melatonin levels after aneurysmal subarachnoid hemorrhage - preliminary findings from an observational cohort study}, series = {Clinical Neurology and Neurosurgery}, volume = {208}, journal = {Clinical Neurology and Neurosurgery}, number = {Article No.: 106870}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0303-8467}, doi = {10.1016/j.clineuro.2021.106870}, year = {2021}, abstract = {Aneurysmal subarachnoid hemorrhage (aSAH) is associated with early and delayed brain injury due to several underlying and interrelated processes, which include inflammation, oxidative stress, endothelial, and neuronal apoptosis. Treatment with melatonin, a cytoprotective neurohormone with anti-inflammatory, anti-oxidant and anti-apoptotic effects, has been shown to attenuate early brain injury (EBI) and to prevent delayed cerebral vasospasm in experimental aSAH models. Less is known about the role of endogenous melatonin for aSAH outcome and how its production is altered by the pathophysiological cascades initiated during EBI. In the present observational study, we analyzed changes in melatonin levels during the first three weeks after aSAH.}, language = {en} } @article{HugenrothBorchardtRitteretal.2021, author = {Hugenroth, Kristin and Borchardt, Ralf and Ritter, Philine and Groß‑Hardt, Sascha and Meyns, Bart and Verbelen, Tom and Steinseifer, Ulrich and Kaufmann, Tim A. S. and Engelmann, Ulrich M.}, title = {Optimizing cerebral perfusion and hemodynamics during cardiopulmonary bypass through cannula design combining in silico, in vitro and in vivo input}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {Art. No. 16800}, publisher = {Springer}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-021-96397-2}, pages = {1 -- 12}, year = {2021}, abstract = {Cardiopulmonary bypass (CPB) is a standard technique for cardiac surgery, but comes with the risk of severe neurological complications (e.g. stroke) caused by embolisms and/or reduced cerebral perfusion. We report on an aortic cannula prototype design (optiCAN) with helical outflow and jet-splitting dispersion tip that could reduce the risk of embolic events and restores cerebral perfusion to 97.5\% of physiological flow during CPB in vivo, whereas a commercial curved-tip cannula yields 74.6\%. In further in vitro comparison, pressure loss and hemolysis parameters of optiCAN remain unaffected. Results are reproducibly confirmed in silico for an exemplary human aortic anatomy via computational fluid dynamics (CFD) simulations. Based on CFD simulations, we firstly show that optiCAN design improves aortic root washout, which reduces the risk of thromboembolism. Secondly, we identify regions of the aortic intima with increased risk of plaque release by correlating areas of enhanced plaque growth and high wall shear stresses (WSS). From this we propose another easy-to-manufacture cannula design (opti2CAN) that decreases areas burdened by high WSS, while preserving physiological cerebral flow and favorable hemodynamics. With this novel cannula design, we propose a cannulation option to reduce neurological complications and the prevalence of stroke in high-risk patients after CPB.}, language = {en} } @article{PoghossianSchoening2021, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Recent progress in silicon-based biologically sensitive field-effect devices}, series = {Current Opinion in Electrochemistry}, journal = {Current Opinion in Electrochemistry}, number = {Article number: 100811}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2451-9103}, doi = {10.1016/j.coelec.2021.100811}, year = {2021}, abstract = {Biologically sensitive field-effect devices (BioFEDs) advantageously combine the electronic field-effect functionality with the (bio)chemical receptor's recognition ability for (bio)chemical sensing. In this review, basic and widely applied device concepts of silicon-based BioFEDs (ion-sensitive field-effect transistor, silicon nanowire transistor, electrolyte-insulator-semiconductor capacitor, light-addressable potentiometric sensor) are presented and recent progress (from 2019 to early 2021) is discussed. One of the main advantages of BioFEDs is the label-free sensing principle enabling to detect a large variety of biomolecules and bioparticles by their intrinsic charge. The review encompasses applications of BioFEDs for the label-free electrical detection of clinically relevant protein biomarkers, deoxyribonucleic acid molecules and viruses, enzyme-substrate reactions as well as recording of the cell acidification rate (as an indicator of cellular metabolism) and the extracellular potential.}, language = {en} }