@article{GoettenHavermannBraunetal.2019, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Gomez, Francisco and Bil, Cees}, title = {RANS Simulation Validation of a Small Sensor Turret for UAVs}, series = {Journal of Aerospace Engineering}, volume = {32}, journal = {Journal of Aerospace Engineering}, number = {5}, publisher = {ASCE}, address = {New York}, issn = {1943-5525}, doi = {10.1061/(ASCE)AS.1943-5525.0001055}, pages = {Article number 04019060}, year = {2019}, abstract = {Recent Unmanned Aerial Vehicle (UAV) design procedures rely on full aircraft steady-state Reynolds-Averaged-Navier-Stokes (RANS) analyses in early design stages. Small sensor turrets are included in such simulations, even though their aerodynamic properties show highly unsteady behavior. Very little is known about the effects of this approach on the simulation outcomes of small turrets. Therefore, the flow around a model turret at a Reynolds number of 47,400 is simulated with a steady-state RANS approach and compared to experimental data. Lift, drag, and surface pressure show good agreement with the experiment. The RANS model predicts the separation location too far downstream and shows a larger recirculation region aft of the body. Both characteristic arch and horseshoe vortex structures are visualized and qualitatively match the ones found by the experiment. The Reynolds number dependence of the drag coefficient follows the trend of a sphere within a distinct range. The outcomes indicate that a steady-state RANS model of a small sensor turret is able to give results that are useful for UAV engineering purposes but might not be suited for detailed insight into flow properties.}, language = {en} } @article{QuittmannAbelAlbrachtetal.2019, author = {Quittmann, Oliver J. and Abel, Thomas and Albracht, Kirsten and Str{\"u}der, Heiko K.}, title = {Reliability of muscular activation patterns and their alterations during incremental handcycling in able-bodied participants}, series = {Sports Biomechanics}, journal = {Sports Biomechanics}, number = {Article in press}, publisher = {Taylor \& Francis}, address = {London}, issn = {1752-6116}, doi = {10.1080/14763141.2019.1593496}, year = {2019}, language = {en} } @inproceedings{GaldiHartungDugelay2019, author = {Galdi, Chiara and Hartung, Frank and Dugelay, Jean-Luc}, title = {Socrates: A database of realistic data for source camera recognition on smartphones}, series = {Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM}, booktitle = {Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM}, isbn = {978-989-758-351-3}, doi = {10.5220/0007403706480655}, pages = {648 -- 655}, year = {2019}, language = {en} } @article{SchildtBraunMarzocca2019, author = {Schildt, Ph. and Braun, Carsten and Marzocca, P.}, title = {Metric evaluating potentials of condition-monitoring approaches for hybrid electric aircraft propulsion systems}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Berlin}, issn = {1869-5590}, doi = {10.1007/s13272-019-00411-3}, pages = {1 -- 14}, year = {2019}, language = {en} } @incollection{SchoeningWagnerPoghossianetal.2018, author = {Sch{\"o}ning, Michael Josef and Wagner, Torsten and Poghossian, Arshak and Miyamoto, K.I. and Werner, C.F. and Krause, S. and Yoshinobu, T.}, title = {Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging}, series = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, booktitle = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {9780128097397}, pages = {295 -- 308}, year = {2018}, language = {en} } @article{CapriMorsianiSantoroetal.2019, author = {Capri, Miriam and Morsiani, Cristina and Santoro, Aurelia and Moriggi, Manuela and Conte, Maria and Martucci, Morena and Bellavista, Elena and Fabbri, Cristina and Giampieri, Enrico and Albracht, Kirsten and Fl{\"u}ck, Martin and Ruoss, Severin and Brocca, Lorenza and Canepari, Monica and Longa, Emanuela and Giulio, Irene Di and Bottinelli, Roberto and Cerretelli, Paolo and Salvioli, Stefano and Gelfi, Cecilia and Franceschi, Claudio and Narici, Marco and Rittweger, J{\"o}rn}, title = {Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting}, series = {The FASEB journal : official publication of the Federation of American Societies for Experimental Biology}, volume = {33}, journal = {The FASEB journal : official publication of the Federation of American Societies for Experimental Biology}, number = {4}, doi = {10.1096/fj.201801625R}, pages = {5168 -- 5180}, year = {2019}, language = {en} } @inproceedings{Eggert2019, author = {Eggert, Mathias}, title = {Understanding the acceptance of smart home-based insurances}, series = {Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm \& Uppsala, Sweden, June 8-14, 2019}, booktitle = {Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm \& Uppsala, Sweden, June 8-14, 2019}, isbn = {978-1-7336325-0-8}, pages = {1 -- 15}, year = {2019}, language = {en} } @article{BartellaKamalScholletal.2019, author = {Bartella, Alexander K. and Kamal, Mohammad and Scholl, Ingrid and Schiffer, Stefan and Steegmann, Julius and Ketelsen, Dominik and H{\"o}lzle, Frank W. and Lethaus, Bernd}, title = {Virtual reality in preoperative imaging in maxillofacial surgery: implementation of "the next level"?}, series = {British Journal of Oral and Maxillofacial Surgery}, volume = {57}, journal = {British Journal of Oral and Maxillofacial Surgery}, number = {7}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0266-4356}, doi = {10.1016/j.bjoms.2019.02.014}, pages = {644 -- 648}, year = {2019}, language = {en} } @inproceedings{WaldmannVeraDachwaldetal.2018, author = {Waldmann, Christoph and Vera, Jean-Pierre de and Dachwald, Bernd and Strasdeit, Henry and Sohl, Frank and Hanff, Hendrik and Kowalski, Julia and Heinen, Dirk and Macht, Sabine and Bestmann, Ulf and Meckel, Sebastian and Hildebrandt, Marc and Funke, Oliver and Gehrt, Jan-J{\"o}ran}, title = {Search for life in ice-covered oceans and lakes beyond Earth}, series = {2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761}, booktitle = {2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761}, doi = {10.1109/AUV.2018.8729761}, year = {2018}, abstract = {The quest for life on other planets is closely connected with the search for water in liquid state. Recent discoveries of deep oceans on icy moons like Europa and Enceladus have spurred an intensive discussion about how these waters can be accessed. The challenge of this endeavor lies in the unforeseeable requirements on instrumental characteristics both with respect to the scientific and technical methods. The TRIPLE/nanoAUV initiative is aiming at developing a mission concept for exploring exo-oceans and demonstrating the achievements in an earth-analogue context, exploring the ocean under the ice shield of Antarctica and lakes like Dome-C on the Antarctic continent.}, language = {en} } @article{ThomaRavi2019, author = {Thoma, Andreas and Ravi, Sridhar}, title = {Significance of parallel computing on the performance of Digital Image Correlation algorithms in MATLAB}, pages = {1 -- 17}, year = {2019}, abstract = {Digital Image Correlation (DIC) is a powerful tool used to evaluate displacements and deformations in a non-intrusive manner. By comparing two images, one of the undeformed reference state of a specimen and another of the deformed target state, the relative displacement between those two states is determined. DIC is well known and often used for post-processing analysis of in-plane displacements and deformation of specimen. Increasing the analysis speed to enable real-time DIC analysis will be beneficial and extend the field of use of this technique. Here we tested several combinations of the most common DIC methods in combination with different parallelization approaches in MATLAB and evaluated their performance to determine whether real-time analysis is possible with these methods. To reflect improvements in computing technology different hardware settings were also analysed. We found that implementation problems can reduce the efficiency of a theoretically superior algorithm such that it becomes practically slower than a suboptimal algorithm. The Newton-Raphson algorithm in combination with a modified Particle Swarm algorithm in parallel image computation was found to be most effective. This is contrary to theory, suggesting that the inverse-compositional Gauss-Newton algorithm is superior. As expected, the Brute Force Search algorithm is the least effective method. We also found that the correct choice of parallelization tasks is crucial to achieve improvements in computing speed. A poorly chosen parallelisation approach with high parallel overhead leads to inferior performance. Finally, irrespective of the computing mode the correct choice of combinations of integerpixel and sub-pixel search algorithms is decisive for an efficient analysis. Using currently available hardware realtime analysis at high framerates remains an aspiration.}, language = {en} }