@article{EngelmannBuhlDraacketal.2018, author = {Engelmann, Ulrich M. and Buhl, Eva Miriam and Draack, Sebastian and Viereck, Thilo and Frank, and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Magnetic relaxation of agglomerated and immobilized iron oxide nanoparticles for hyperthermia and imaging applications}, series = {IEEE Magnetic Letters}, volume = {9}, journal = {IEEE Magnetic Letters}, number = {Article number 8519617}, publisher = {IEEE}, address = {New York, NY}, issn = {1949-307X}, doi = {10.1109/LMAG.2018.2879034}, year = {2018}, abstract = {Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic agents for local delivery of heat and image contrast enhancement in diseased tissue. Besides magnetization, the most important parameter that determines their performance for these applications is their magnetic relaxation, which can be affected when MNPs immobilize and agglomerate inside tissues. In this letter, we investigate different MNP agglomeration states for their magnetic relaxation properties under excitation in alternating fields and relate this to their heating efficiency and imaging properties. With focus on magnetic fluid hyperthermia, two different trends in MNP heating efficiency are measured: an increase by up to 23\% for agglomerated MNP in suspension and a decrease by up to 28\% for mixed states of agglomerated and immobilized MNP, which indicates that immobilization is the dominant effect. The same comparatively moderate effects are obtained for the signal amplitude in magnetic particle spectroscopy.}, language = {en} } @article{BergmannGoettenBraunetal.2022, author = {Bergmann, Ole and G{\"o}tten, Falk and Braun, Carsten and Janser, Frank}, title = {Comparison and evaluation of blade element methods against RANS simulations and test data}, series = {CEAS Aeronautical Journal}, volume = {13}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-022-00579-1}, pages = {535 -- 557}, year = {2022}, abstract = {This paper compares several blade element theory (BET) method-based propeller simulation tools, including an evaluation against static propeller ground tests and high-fidelity Reynolds-Average Navier Stokes (RANS) simulations. Two proprietary propeller geometries for paraglider applications are analysed in static and flight conditions. The RANS simulations are validated with the static test data and used as a reference for comparing the BET in flight conditions. The comparison includes the analysis of varying 2D aerodynamic airfoil parameters and different induced velocity calculation methods. The evaluation of the BET propeller simulation tools shows the strength of the BET tools compared to RANS simulations. The RANS simulations underpredict static experimental data within 10\% relative error, while appropriate BET tools overpredict the RANS results by 15-20\% relative error. A variation in 2D aerodynamic data depicts the need for highly accurate 2D data for accurate BET results. The nonlinear BET coupled with XFOIL for the 2D aerodynamic data matches best with RANS in static operation and flight conditions. The novel BET tool PropCODE combines both approaches and offers further correction models for highly accurate static and flight condition results.}, language = {en} } @inproceedings{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {In-flight vibration-based structural health monitoring of aircraft wings}, series = {30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea}, booktitle = {30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea}, pages = {10 Seiten}, year = {2016}, abstract = {This work presents a methodology for automated damage-sensitive feature extraction and anomaly detection under multivariate operational variability for in-flight assessment of wings. The method uses a passive excitation approach, i. e. without the need for artificial actuation. The modal system properties (natural frequencies and damping ratios) are used as damage-sensitive features. Special emphasis is placed on the use of Fiber Bragg Grating (FBG) sensing technology and the consideration of Operational and Environmental Variability (OEV). Measurements from a wind tunnel investigation with a composite cantilever equipped with FBG and piezoelectric sensors are used to successfully detect an impact damage. In addition, the feasibility of damage localisation and severity estimation is evaluated based on the coupling found between damageand OEV-induced feature changes.}, language = {en} } @inproceedings{KleineKallweitMichauxetal.2016, author = {Kleine, Harald and Kallweit, Stephan and Michaux, Frank and Havermann, Marc and Olivier, Herbert}, title = {PIV Measurement of Shock Wave Diffraction}, series = {18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2016, Lissabon}, booktitle = {18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2016, Lissabon}, pages = {1 -- 14}, year = {2016}, language = {en} } @inproceedings{DinghoferHartung2020, author = {Dinghofer, Kai and Hartung, Frank}, title = {Analysis of Criteria for the Selection of Machine Learning Frameworks}, series = {2020 International Conference on Computing, Networking and Communications (ICNC)}, booktitle = {2020 International Conference on Computing, Networking and Communications (ICNC)}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/ICNC47757.2020.9049650}, pages = {373 -- 377}, year = {2020}, abstract = {With the many achievements of Machine Learning in the past years, it is likely that the sub-area of Deep Learning will continue to deliver major technological breakthroughs [1]. In order to achieve best results, it is important to know the various different Deep Learning frameworks and their respective properties. This paper provides a comparative overview of some of the most popular frameworks. First, the comparison methods and criteria are introduced and described with a focus on computer vision applications: Features and Uses are examined by evaluating papers and articles, Adoption and Popularity is determined by analyzing a data science study. Then, the frameworks TensorFlow, Keras, PyTorch and Caffe are compared based on the previously described criteria to highlight properties and differences. Advantages and disadvantages are compared, enabling researchers and developers to choose a framework according to their specific needs.}, language = {en} } @article{DefosseKleinschmidtSchmutzetal.2022, author = {Defosse, Jerome and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Staat, Manfred and Gatzweiler, Karl-Heinz and Wappler, Frank and Schieren, Mark}, title = {Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study}, series = {Journal of Cardiothoracic and Vascular Anesthesia}, volume = {36}, journal = {Journal of Cardiothoracic and Vascular Anesthesia}, number = {8, Part B}, publisher = {Elsevier}, address = {New York, NY}, issn = {1053-0770}, doi = {10.1053/j.jvca.2022.02.017}, pages = {3021 -- 3027}, year = {2022}, language = {en} } @inproceedings{AuthCzarneckiBensberg2019, author = {Auth, Gunnar and Czarnecki, Christian and Bensberg, Frank}, title = {Impact of robotic process automation on enterprise architectures}, series = {GI Edition Proceedings Band 295 INFORMATIK 2019, Workshop-Beitr{\"a}ge}, booktitle = {GI Edition Proceedings Band 295 INFORMATIK 2019, Workshop-Beitr{\"a}ge}, editor = {Draude, Claude and Lange, Martin and Sick, Bernhard and Gesellschaft f{\"u}r Informatik e.V. (GI),}, publisher = {K{\"o}llen}, address = {Bonn}, isbn = {9783885796893}, issn = {1617-5468}, doi = {10.18420/inf2019_ws05}, pages = {59 -- 65}, year = {2019}, abstract = {The initial idea of Robotic Process Automation (RPA) is the automation of business processes through the presentation layer of existing application systems. For this simple emulation of user input and output by software robots, no changes of the systems and architecture is required. However, considering strategic aspects of aligning business and technology on an enterprise level as well as the growing capabilities of RPA driven by artificial intelligence, interrelations between RPA and Enterprise Architecture (EA) become visible and pose new questions. In this paper we discuss the relationship between RPA and EA in terms of perspectives and implications. As workin- progress we focus on identifying new questions and research opportunities related to RPA and EA.}, language = {en} } @inproceedings{BensbergAuthCzarneckietal.2018, author = {Bensberg, Frank and Auth, Gunnar and Czarnecki, Christian and W{\"o}rndle, Christopher}, title = {Transforming literature-intensive research processes through text analytics - design, implementation and lessons learned}, editor = {Kemal İlter, H.}, doi = {10.6084/m9.figshare.7582073.v1}, pages = {9 Seiten}, year = {2018}, abstract = {The continuing growth of scientific publications raises the question how research processes can be digitalized and thus realized more productively. Especially in information technology fields, research practice is characterized by a rapidly growing volume of publications. For the search process various information systems exist. However, the analysis of the published content is still a highly manual task. Therefore, we propose a text analytics system that allows a fully digitalized analysis of literature sources. We have realized a prototype by using EBSCO Discovery Service in combination with IBM Watson Explorer and demonstrated the results in real-life research projects. Potential addressees are research institutions, consulting firms, and decision-makers in politics and business practice.}, language = {en} } @inproceedings{MertensPuetzBrauneretal.2021, author = {Mertens, Alexander and P{\"u}tz, Sebastian and Brauner, Philipp and Brillowski, Florian Sascha and Buczak, Nadine and Dammers, Hannah and van Dyck, Marc and Kong, Iris and K{\"o}nigs, Peter and Kortomeikel, Frauke Carole and Rodemann, Niklas and Schaar, Anne Kathrin and Steuer-Dankert, Linda and Wlecke, Shari and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Piller, Frank Thomas and Schuh, G{\"u}nther and Ziefle, Martina and Nitsch, Verena}, title = {Human digital shadow: Data-based modeling of users and usage in the internet of production}, series = {14th Conference Human System Interaction Conference Proceedings}, booktitle = {14th Conference Human System Interaction Conference Proceedings}, publisher = {IEEE}, doi = {10.1109/HSI52170.2021.9538729}, pages = {1 -- 8}, year = {2021}, abstract = {Digital Shadows as the aggregation, linkage and abstraction of data relating to physical objects are a central vision for the future of production. However, the majority of current research takes a technocentric approach, in which the human actors in production play a minor role. Here, the authors present an alternative anthropocentric perspective that highlights the potential and main challenges of extending the concept of Digital Shadows to humans. Following future research methodology, three prospections that illustrate use cases for Human Digital Shadows across organizational and hierarchical levels are developed: human-robot collaboration for manual work, decision support and work organization, as well as human resource management. Potentials and challenges are identified using separate SWOT analyses for the three prospections and common themes are emphasized in a concluding discussion.}, language = {en} } @inproceedings{MertensBraunerBaieretal.2022, author = {Mertens, Alexander and Brauner, Philipp and Baier, Ralph and Brillowski, Florian and Dammers, Hannah and van Dyck, Marc and Kong, Iris and K{\"o}nigs, Peter and Kordtomeikel, Frauke and Liehner, Gian Luca and P{\"u}tz, Sebastian and Rodermann, Niklas and Schaar, Anne Kathrin and Steuer-Dankert, Linda and Vervier, Luisa and Wlecke, Shari and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Piller, Frank T. and Schuh, G{\"u}nther and Ziefle, Martina and Nitsch, Verena}, title = {Modelling Human Factors in Cyber Physical Production Systems by the Integration of Human Digital Shadows}, series = {Modellierung 2022 Satellite Events}, booktitle = {Modellierung 2022 Satellite Events}, editor = {Michael, Judith and Pfeiffer, J{\´e}r{\^o}me and Wortmann, Andreas}, publisher = {GI Gesellschaft f{\"u}r Informatik}, address = {Bonn}, doi = {10.18420/modellierung2022ws-018}, pages = {147 -- 149}, year = {2022}, abstract = {The future of industrial manufacturing and production will increasingly manifest in the form of cyber-physical production systems. Here, Digital Shadows will act as mediators between the physical and digital world to model and operationalize the interactions and relationships between different entities in production systems. Until now, the associated concepts have been primarily pursued and implemented from a technocentric perspective, in which human actors play a subordinate role, if they are considered at all. This paper outlines an anthropocentric approach that explicitly considers the characteristics, behavior, and traits and states of human actors in socio-technical production systems. For this purpose, we discuss the potentials and the expected challenges and threats of creating and using Human Digital Shadows in production.}, language = {en} }