@article{DieringerRenzLindeletal.2011, author = {Dieringer, Matthias A. and Renz, Wolfgang and Lindel, Tomasz D. and Seifert, Frank and Frauenrath, Tobias and von Knobelsdorf-Brenkenhoff, Florian and Waiczies, Helmar and Hoffmann, Werner and Rieger, Jan and Pfeiffer, Harald and Ittermann, Bernd and Schulz-Menger, Jeanette and Niendorf, Thoralf}, title = {Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T}, series = {Journal of Magnetic Resonance Imaging}, volume = {33}, journal = {Journal of Magnetic Resonance Imaging}, number = {3}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2586}, doi = {10.1002/jmri.22451}, pages = {736 -- 741}, year = {2011}, abstract = {Purpose To design and evaluate a four-channel cardiac transceiver coil array for functional cardiac imaging at 7T. Materials and Methods A four-element cardiac transceiver surface coil array was developed with two rectangular loops mounted on an anterior former and two rectangular loops on a posterior former. specific absorption rate (SAR) simulations were performed and a Burn:x-wiley:10531807:media:JMRI22451:tex2gif-stack-1 calibration method was applied prior to obtain 2D FLASH CINE (mSENSE, R = 2) images from nine healthy volunteers with a spatial resolution of up to 1 × 1 × 2.5 mm3. Results Tuning and matching was found to be better than 10 dB for all subjects. The decoupling (S21) was measured to be >18 dB between neighboring loops, >20 dB for opposite loops, and >30 dB for other loop combinations. SAR values were well within the limits provided by the IEC. Imaging provided clinically acceptable signal homogeneity with an excellent blood-myocardium contrast applying the Burn:x-wiley:10531807:media:JMRI22451:tex2gif-stack-2 calibration approach. Conclusion A four-channel cardiac transceiver coil array for 7T was built, allowing for cardiac imaging with clinically acceptable signal homogeneity and an excellent blood-myocardium contrast. Minor anatomic structures, such as pericardium, mitral, and tricuspid valves and their apparatus, as well as trabeculae, were accurately delineated.}, language = {en} } @article{BindalSharmaJanseretal.2013, author = {Bindal, Gaurav and Sharma, Sparsh and Janser, Frank and Neu, Eugen}, title = {Detailed analysis of variables affecting wing kinematics of bat flight}, series = {SAE International Journal of Aerospace}, volume = {6}, journal = {SAE International Journal of Aerospace}, number = {2}, issn = {1946-3901}, doi = {10.4271/2013-01-9003}, pages = {811 -- 818}, year = {2013}, language = {en} } @article{BouwmanGuldenHeijdenetal.2013, author = {Bouwman, Peter and Gulden, Hanneke van der and Heijden, Ingrid van der and Drost, Rinske and Klijn, Christiaan N. and Prasetyanti, Pramudita and Pieterse, Mark and Wientjens, Ellen and Seibler, Jost and Hogervorst, Frank B. L. and Jonkers, Jos}, title = {A High-Throughput Functional Complementation Assay for Classification of BRCA1 Missense Variants}, series = {Cancer Discovery}, journal = {Cancer Discovery}, number = {3}, issn = {2159-8290}, doi = {10.1158/2159-8290.CD-13-0094}, pages = {1142 -- 1152}, year = {2013}, language = {en} } @article{WeemstraEilmannSassKlaassenetal.2013, author = {Weemstra, Monique and Eilmann, Britta and Sass-Klaassen, Ute G. W. and Sterck, Frank J.}, title = {Summer droughts limit tree growth across 10 temperate species on a productive forest site}, series = {Forest Ecology and Management}, volume = {2013}, journal = {Forest Ecology and Management}, number = {306}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127 (Print)}, doi = {doi:10.1016/j.foreco.2013.06.007}, pages = {142 -- 149}, year = {2013}, language = {en} } @article{IkenAhlbornGerlachetal.2013, author = {Iken, Heiko and Ahlborn, Kristina and Gerlach, Frank and Vonau, Winfried and Zander, Wilhelm and Schubert, J{\"u}rgen P. and Sch{\"o}ning, Michael Josef}, title = {Development of redox glasses and subsequent processing by means of pulsed laser deposition for realizing silicon-based thin-film sensors}, series = {Electrochimica acta}, journal = {Electrochimica acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3859 (E-Journal); 0013-4686 (Print)}, pages = {Available online 30.8.2013}, year = {2013}, language = {en} } @article{EilmannSterckWegneretal.2014, author = {Eilmann, Britta and Sterck, Frank J. and Wegner, L. and de Vries, Sven M. G. and von Arx, G. and Mohren, Godefridus M. J. and den Ouden, Jan and Sass-Klaassen, Ute G. W.}, title = {Wood structural differences between northern and southern beech provenances growing at a moderate site}, series = {Tree Physiology}, volume = {34}, journal = {Tree Physiology}, number = {8}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1758-4469 (Online)}, doi = {10.1093/treephys/tpu069}, pages = {882 -- 893}, year = {2014}, language = {en} } @article{LuisierLempiaeinenScherbichleretal.2014, author = {Luisier, Rapha{\"e}lle and Lempi{\"a}inen, Harri and Scherbichler, Nina and Braeuning, Albert and Geissler, Miriam and Dubost, Valerie and M{\"u}ller, Arne and Scheer, Nico and Chibout, Salah-Dine and Hara, Hisanori and Picard, Frank and Theil, Diethilde and Couttet, Philippe and Vitobello, Antonio and Grenet, Olivier and Grasl-Kraupp, Bettina and Ellinger-Ziegelbauer, Heidrung and Thomson, John P. and Meehan, Richard R. and Elcombe, Clifford R. and Henderson, Colin J. and Wolf, C. Roland and Schwarz, Michael and Moulin, Pierre and Terranova, Remi and Moggs, Jonathan G.}, title = {Phenobarbital Induces Cell Cycle Transcriptional Responses in Mouse Liver Humanized for Constitutive Androstane and Pregnane X Receptors}, series = {Toxicological Sciences}, volume = {139}, journal = {Toxicological Sciences}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1094-2025}, doi = {https://doi.org/10.1093/toxsci/kfu038}, pages = {501 -- 511}, year = {2014}, abstract = {The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CARᴷᴼ-PXRᴷᴼ), double humanized CAR and PXR (CARʰ-PXRʰ), and wild-type C57BL/6 mice. Wild-type and CARʰ-PXRʰ mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CARᴷᴼ-PXRᴷᴼ mouse livers and largely reversible in wild-type and CARʰ-PXRʰ mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CARʰ-PXRʰ mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.}, language = {en} } @article{DelleHuckBaeckeretal.2015, author = {Delle, Lotta E. and Huck, Christina and B{\"a}cker, Matthias and M{\"u}ller, Frank and Grandthyll, Samuel and Jacobs, Karin and Lilischkis, Rainer and Vu, Xuan T. and Sch{\"o}ning, Michael Josef and Wagner, Patrick and Thoelen, Roland and Weil, Maryam and Ingebrandt, Sven}, title = {Impedimetric immunosensor for the detection of histamine based on reduced graphene oxide}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431863}, pages = {1327 -- 1334}, year = {2015}, language = {en} } @article{HoevelerJanserBindewaldetal.2015, author = {Hoeveler, Bastian and Janser, Frank and Bindewald, Thorsten and Gebhardt, Andreas}, title = {Entwurf, Fertigung und Untersuchung eines Windkanalmodells eines innovativen, senkrechtstartenden Kleinflugzeuges}, series = {RTejournal - Forum f{\"u}r Rapid Technologie}, journal = {RTejournal - Forum f{\"u}r Rapid Technologie}, number = {12}, publisher = {Fachhochschule Aachen}, address = {Aachen}, issn = {1614-0923}, url = {http://nbn-resolving.de/urn:nbn:de:0009-2-42921}, pages = {1 -- 5}, year = {2015}, language = {de} } @article{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Braun, Carsten and Orifici, Adrian C.}, title = {Operational Modal Analysis of a wing excited by transonic flow}, series = {Aerospace Science and Technology}, volume = {49}, journal = {Aerospace Science and Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1270-9638}, doi = {10.1016/j.ast.2015.11.032}, pages = {73 -- 79}, year = {2016}, abstract = {Operational Modal Analysis (OMA) is a promising candidate for flutter testing and Structural Health Monitoring (SHM) of aircraft wings that are passively excited by wind loads. However, no studies have been published where OMA is tested in transonic flows, which is the dominant condition for large civil aircraft and is characterized by complex and unique aerodynamic phenomena. We use data from the HIRENASD large-scale wind tunnel experiment to automatically extract modal parameters from an ambiently excited wing operated in the transonic regime using two OMA methods: Stochastic Subspace Identification (SSI) and Frequency Domain Decomposition (FDD). The system response is evaluated based on accelerometer measurements. The excitation is investigated from surface pressure measurements. The forcing function is shown to be non-white, non-stationary and contaminated by narrow-banded transonic disturbances. All these properties violate fundamental OMA assumptions about the forcing function. Despite this, all physical modes in the investigated frequency range were successfully identified, and in addition transonic pressure waves were identified as physical modes as well. The SSI method showed superior identification capabilities for the investigated case. The investigation shows that complex transonic flows can interfere with OMA. This can make existing approaches for modal tracking unsuitable for their application to aircraft wings operated in the transonic flight regime. Approaches to separate the true physical modes from the transonic disturbances are discussed.}, language = {en} }