@article{ZhubanovaAknazarovMansurovetal.2010, author = {Zhubanova, Azhar A. and Aknazarov, S. K. and Mansurov, Zulkhair and Digel, Ilya and Kozhalakova, A. A. and Akimbekov, Nuraly Shardarbekovich and O'Heras, Carlos and Tazhibayeva, S. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Adsorption of bacterial Lipopolysaccharides and blood plasma proteins on modified carbonized materials}, year = {2010}, abstract = {Bacterial lipopolysaccharides (endotoxins) show strong biological effects at very low concentrations in human beings and many animals when entering the blood stream. These include affecting structure and function of organs and cells, changing metabolic functions, raising body temperature, triggering the coagulation cascade, modifying hemodynamics and causing septic shock. Because of this toxicity, the removal of even minute amounts is essential for safe parenteral administration of drugs and also for septic shock patients' care. The absence of a general method for endotoxin removal from liquid interfaces urgently requires finding new methods and materials to overcome this gap. Nanostructured carbonized plant parts is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study was comparative measurement of endotoxin- and blood proteins-related adsorption rate and adsorption capacity for different carboneous materials produced at different temperatures and under different surface modifications. As a main surface modificator, positively cbarged polymer, polyethileneimine (PEl) was used. Activated carbon materials showed good adsorption properties for LPS and some proteins used in the experiments. During the batch experiments, several techniques (dust removal, autoclaving) were used and optimized for improving the material's adsorption behavior. Also, with the results obtained it was possible to differentiate the materials according to their adsorption capacity and kinetic characteristics. Modification of the surface apparently has not affected hemoglobin binding to the adsorbent's surface. Obtained adsorption isotherms can be used as a powerful tool for designing of future column-based setups for blood purification from LPS, which is especially important for septic shock treatment.}, subject = {Kohlenstofffaser}, language = {en} } @article{ZhubanovaDigelNojimaetal.2007, author = {Zhubanova, Azhar A. and Digel, Ilya and Nojima, H. and Artmann, Gerhard}, title = {The use of bactericidal effects of cluster ions generated by plasma in medical biotechnology}, year = {2007}, abstract = {The most of conventional methods of air purification use the power of a fan to draw in air and pass it through a filter. The problem of bacterial contamination of inner parts of such a type of air conditioners in some cases draws attention towards alternative air-cleaning systems. Some manufacturers offer to use the ozone's bactericidal and deodorizing effects, but the wide spreading of such systems is restricted by the fact that toxic effects of ozone in respect of human beings are well known. In 2000 Sharp Inc. introduced "Plasma Cluster Ions (PCI)" air purification technology, which uses plasma discharge to generate cluster ions (I 0-14 ). This technology has been developed for those customers that are conscious about health and hygiene. In our experiments, we focused on some principal aspects of plasma-generated ions application - time-dependency and irreversibility of bactericidal action, spatial and kinetic characteristics of emitted cluster particles, their chemical targets in the microbial cells.}, subject = {Clusterion}, language = {en} } @article{AkimbekovMansurovJandosovetal.2013, author = {Akimbekov, Nuraly Shardarbekovich and Mansurov, Zulkhair and Jandosov, J. and Digel, Ilya and Gossmann, Matthias and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A.}, title = {Wound healing activity of carbonized rice husk}, publisher = {Trans Tech Publications, Switzerland}, address = {B{\"a}ch}, year = {2013}, abstract = {The carbonized rice husk (CRH) was evaluated for its wound healing activity in rats using excision models. In this study, the influences of CRH on wound healing in rat skin in vivo and cellular behavior of human dermal fibroblasts in vitro were investigated. The obtained results showed that the CRH treatment promoted wound epithelization in rats and exhibited moderate inhibition of cell proliferation in vitro. CRH with lanolin oil treated wounds were found to epithelize faster as compared to controls.}, subject = {Wundheilung}, language = {en} } @inproceedings{MansurovZhubanovaDigeletal.2008, author = {Mansurov, Zulkhair and Zhubanova, Azhar A. and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Savitskaja, Irina S. and Kozhalakova, A. A. and Kistaubaeva, Aida S.}, title = {The sorption of LPS toxic shock by nanoparticles on base of carbonized vegetable raw materials}, year = {2008}, abstract = {Immobilization of lactobacillus on high temperature carbonizated vegetable raw material (rice husk, grape stones) increases their physiological activity and the quantity of the antibacterial metabolits, that consequently lead to increase of the antagonistic activity of lactobacillus. It is implies that the use of the nanosorbents for the attachment of the probiotical microorganisms are highly perspective for decision the important problems, such as the probiotical preparations delivery to the right address and their attachment to intestines mucosa with the following detoxication of gastro-intestinal tract and the normalization of it's microecology. Besides that, thus, the received carbonizated nanoparticles have peculiar properties - ability to sorption of LPS toxical shock and, hence, to the detoxication of LPS.}, subject = {Kohlenstofffaser}, language = {en} } @article{KozhalakovaZhubanovaMansurovetal.2010, author = {Kozhalakova, A. A. and Zhubanova, Azhar A. and Mansurov, Z. A. and Digel, Ilya and Tazhibayeva, S. M. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Adsorption of bacterial lipopolysaccharides on carbonized rice shell}, series = {Science of Central Asia (2010)}, journal = {Science of Central Asia (2010)}, pages = {50 -- 54}, year = {2010}, language = {en} } @article{DigelZhubanovaNojimaetal.2004, author = {Digel, Ilya and Zhubanova, Azhar A. and Nojima, H. and Artmann, Gerhard}, title = {The use of bactericidal effects of cluster ions generated by plasma in medical biotechnology}, series = {Biotechnologija : teorija i praktika (2004)}, journal = {Biotechnologija : teorija i praktika (2004)}, isbn = {1028-9399}, pages = {46 -- 52}, year = {2004}, language = {en} } @book{ArtmannTemizArtmannZhubanovaetal.2018, author = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, title = {Biological, physical and technical basics of cell engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7903-0}, pages = {xxiv, 481 Seiten ; Illustrationen, Diagramme}, year = {2018}, language = {en} } @incollection{DigelAkimbekovKistaubayevaetal.2018, author = {Digel, Ilya and Akimbekov, Nuraly Sh. and Kistaubayeva, Aida and Zhubanova, Azhar A.}, title = {Microbial Sampling from Dry Surfaces: Current Challenges and Solutions}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_19}, pages = {421 -- 456}, year = {2018}, abstract = {Sampling of dry surfaces for microorganisms is a main component of microbiological safety and is of critical importance in many fields including epidemiology, astrobiology as well as numerous branches of medical and food manufacturing. Aspects of biofilm formation, analysis and removal in aqueous solutions have been thoroughly discussed in literature. In contrast, microbial communities on air-exposed (dry) surfaces have received significantly less attention. Diverse surface sampling methods have been developed in order to address various surfaces and microbial groups, but they notoriously show poor repeatability, low recovery rates and suffer from lack of mutual consistency. Quantitative sampling for viable microorganisms represents a particular challenge, especially on porous and irregular surfaces. Therefore, it is essential to examine in depth the factors involved in microorganisms' recovery efficiency and accuracy depending on the sampling technique used. Microbial colonization, retention and community composition on different dry surfaces are very complex and rely on numerous physicochemical and biological factors. This study is devoted to analyze and review the (a) physical phenomena and intermolecular forces relevant for microbiological surface sampling; (b) challenges and problems faced by existing sampling methods for viable microorganisms and (c) current directions of engineering and research aimed at improvement of quality and efficiency of microbiological surface sampling.}, language = {en} } @inproceedings{SavitskayaKistaubayevaAkimbekovetal.2013, author = {Savitskaya, Irina S. and Kistaubayeva, Aida S. and Akimbekov, Nuraly S. and Digel, Ilya and Zhubanova, Azhar A.}, title = {Performance of Bio-Composite Carbonized Materials in Probiotic Applications}, series = {World Academy of Science, Engineering and Technology International Journal of Biotechnology and Bioengineering}, volume = {7}, booktitle = {World Academy of Science, Engineering and Technology International Journal of Biotechnology and Bioengineering}, number = {7}, pages = {685 -- 689}, year = {2013}, language = {en} } @incollection{ZhubanovaMansurovDigel2020, author = {Zhubanova, Azhar A. and Mansurov, Zulkhair A. and Digel, Ilya}, title = {Use of Advanced Nanomaterials for Bioremediation of Contaminated Ecosystems}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-18}, pages = {353 -- 378}, year = {2020}, abstract = {This chapter shows that nanomaterials obtained by high-temperature carbonization of inexpensive plant raw material such as rice husk, grape seeds, and walnut shells can serve as a basis for the production of highly efficient microbial drugs, biodestructors, biosorbents, and biocatalysts, which are promising for the remediation of the ecosystem contaminated with heavy and radioactive metals, oil and oil products. A strong interest in engineering zymology is dictated by the necessity to address the issues of monitoring enzymatic processes, treatment, and diagnosis of a number of common human diseases, environmental pollution, quality control of pharmaceuticals and food. Nanomaterials obtained by high-temperature carbonization of cheap plant raw material such as-rice husks, grape seeds and walnut shells, can serve as a basis for creating of highly effective microbial preparations-biodestructors, biosorbents and biocatalysts, which are promising for the use of contaminated ecosystems, and for restoration of human intestine microecology.}, language = {en} }