@inproceedings{HorikawaOkadaKazarietal.2015, author = {Horikawa, Atsushi and Okada, Kunio and Kazari, Masahide and Funke, Harald and Keinz, Jan and Kusterer, Karsten and Haj Ayed, Anis}, title = {Application of Low NOx Micro-Mix Hydrogen Combustion to Industrial Gas Turbine Combustor and Conceptual Design}, series = {Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan}, booktitle = {Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan}, isbn = {978-4-89111-008-6}, pages = {141 -- 146}, year = {2015}, language = {en} } @inproceedings{HorikawaOkadaUtoetal.2019, author = {Horikawa, Atsushi and Okada, Kunio and Uto, Takahiro and Uchiyama, Yuta and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Application of Low NOx Micro-mix Hydrogen Combustion to 2MW Class Industrial Gas Turbine Combustor}, series = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan}, booktitle = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan}, isbn = {978-4-89111-010-9}, pages = {1 -- 6}, year = {2019}, language = {en} } @inproceedings{HorikawaKazariOkadaetal.2015, author = {Horikawa, Atsushi and Kazari, Masahide and Okada, Kunio and Funke, Harald and Keinz, Jan and Kusterer, Karsten and Haji Ayed, Anis}, title = {Developments of Hydrogen Dry Low Emission Combustion Technology}, series = {Annual Congress of Gas Turbine Society Japan, 2015}, booktitle = {Annual Congress of Gas Turbine Society Japan, 2015}, pages = {5 S.}, year = {2015}, language = {en} } @article{FunkeKeinzKustereretal.2016, author = {Funke, Harald and Keinz, Jan and Kusterer, Karsten and Ayed, Anis Haj and Kazari, Masahide and Kitajima, Junichi and Horikawa, Atsushi and Okada, Kunio}, title = {Experimental and Numerical Study on Optimizing the Dry Low NOₓ Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications}, series = {Journal of Thermal Science and Engineering Applications}, volume = {9}, journal = {Journal of Thermal Science and Engineering Applications}, number = {2}, publisher = {ASME}, address = {New York, NY}, issn = {1948-5093}, doi = {10.1115/1.4034849}, pages = {021001 -- 021001-10}, year = {2016}, abstract = {Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low-emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to dry low NOₓ (DLN) hydrogen combustion. The DLN micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOₓ emissions. This combustion principle for air-breathing engines is based on crossflow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flashback and with low NOₓ emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high-thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high-energy injectors, while the DLN micromix characteristics of the design point, under part-load conditions, and under off-design operation are maintained. Atmospheric test rig data on NOₓ emissions, optical flame-structure, and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized micromix flamelets is particularly investigated numerically for the resulting flow field, the flame-structure, and NOₓ formation.}, language = {en} } @article{TekinAshikagaHorikawaetal.2018, author = {Tekin, Nurettin and Ashikaga, Mitsugu and Horikawa, Atsushi and Funke, Harald}, title = {Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems}, series = {Gas for energy}, journal = {Gas for energy}, number = {2}, publisher = {Vulkan-Verlag}, address = {Essen}, pages = {4}, year = {2018}, abstract = {For fuel flexibility enhancement hydrogen represents a possible alternative gas turbine fuel within future low emission power generation, in case of hydrogen production by the use of renewable energy sources such as wind energy or biomass. Kawasaki Heavy Industries, Ltd. (KHI) has research and development projects for future hydrogen society; production of hydrogen gas, refinement and liquefaction for transportation and storage, and utilization with gas turbine / gas engine for the generation of electricity. In the development of hydrogen gas turbines, a key technology is the stable and low NOx hydrogen combustion, especially Dry Low Emission (DLE) or Dry Low NOx (DLN) hydrogen combustion. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for DLE hydrogen combustion. Thus, the development of DLE hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fueled gas turbines. The DLE Micro-Mix combustion principle for hydrogen fuel has been in development for many years to significantly reduce NOx emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized "diffusion-type" flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NOx-emissions due to a very short residence time of the reactants in the flame region of the micro-flames.}, language = {en} } @article{DickhoffHorikawaFunke2021, author = {Dickhoff, Jens and Horikawa, Atsushi and Funke, Harald}, title = {Hydrogen Combustion - new DLE Combustor Addresses NOx Emissions and Flashback}, series = {Turbomachinery international : the global journal of energy equipment}, volume = {62}, journal = {Turbomachinery international : the global journal of energy equipment}, number = {4}, publisher = {MJH Life Sciences}, address = {Cranbury}, issn = {2767-2328}, pages = {26 -- 27}, year = {2021}, language = {en} } @inproceedings{HorikawaOkadaYamaguchietal.2021, author = {Horikawa, Atsushi and Okada, Kunio and Yamaguchi, Masato and Aoki, Shigeki and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine}, series = {ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition // Volume 3B: Combustion, Fuels, and Emissions}, booktitle = {ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition // Volume 3B: Combustion, Fuels, and Emissions}, doi = {10.1115/GT2021-59666}, pages = {13 Seiten}, year = {2021}, abstract = {Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B\&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15\%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100\% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH\%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat.}, language = {en} } @inproceedings{HorikawaAshikagaYamaguchietal.2022, author = {Horikawa, Atsushi and Ashikaga, Mitsugu and Yamaguchi, Masato and Ogino, Tomoyuki and Aoki, Shigeki and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Combined heat and power supply demonstration of Micro-Mix Hydrogen Combustion Applied to M1A-17 Gas Turbine}, series = {Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition (GT2022) (Volume 3A)}, booktitle = {Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition (GT2022) (Volume 3A)}, publisher = {American Society of Mechanical Engineers}, address = {Fairfield}, isbn = {978-0-7918-8599-4}, doi = {10.1115/GT2022-81620}, pages = {7 Seiten}, year = {2022}, abstract = {Kawasaki Heavy Industries, Ltd. (KHI), Aachen University of Applied Sciences, and B\&B-AGEMA GmbH have investigated the potential of low NOx micro-mix (MMX) hydrogen combustion and its application to an industrial gas turbine combustor. Engine demonstration tests of a MMX combustor for the M1A-17 gas turbine with a co-generation system were conducted in the hydrogen-fueled power generation plant in Kobe City, Japan. This paper presents the results of the commissioning test and the combined heat and power (CHP) supply demonstration. In the commissioning test, grid interconnection, loading tests and load cut-off tests were successfully conducted. All measurement results satisfied the Japanese environmental regulation values. Dust and soot as well as SOx were not detected. The NOx emissions were below 84 ppmv at 15 \% O2. The noise level at the site boundary was below 60 dB. The vibration at the site boundary was below 45 dB. During the combined heat and power supply demonstration, heat and power were supplied to neighboring public facilities with the MMX combustion technology and 100 \% hydrogen fuel. The electric power output reached 1800 kW at which the NOx emissions were 72 ppmv at 15 \% O2, and 60 \%RH. Combustion instabilities were not observed. The gas turbine efficiency was improved by about 1 \% compared to a non-premixed type combustor with water injection as NOx reduction method. During a total equivalent operation time of 1040 hours, all combustor parts, the M1A-17 gas turbine as such, and the co-generation system were without any issues.}, language = {en} } @inproceedings{AyedStrieganKustereretal.2017, author = {Ayed, Anis Haj and Striegan, Constantin J. D. and Kusterer, Karsten and Funke, Harald and Kazari, M. and Horikawa, Atsushi and Okada, Kunio}, title = {Automated design space exploration of the hydrogen fueled "Micromix" combustor technology}, pages = {1 -- 8}, year = {2017}, abstract = {Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested "DLN Micromix" combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field.}, language = {en} } @inproceedings{KronigerHorikawaFunkeetal.2021, author = {Kroniger, Daniel and Horikawa, Atsushi and Funke, Harald and Pf{\"a}ffle, Franziska and Kishimoto, Tsuyoshi and Okada, Koichi}, title = {Experimental and numerical investigation on the effect of pressure on micromix hydrogen combustion}, series = {ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition // Volume 3A: Combustion, Fuels, and Emissions}, booktitle = {ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition // Volume 3A: Combustion, Fuels, and Emissions}, doi = {10.1115/GT2021-58926}, pages = {11 Seiten}, year = {2021}, abstract = {The micromix (MMX) combustion concept is a DLN gas turbine combustion technology designed for high hydrogen content fuels. Multiple non-premixed miniaturized flames based on jet in cross-flow (JICF) are inherently safe against flashback and ensure a stable operation in various operative conditions. The objective of this paper is to investigate the influence of pressure on the micromix flame with focus on the flame initiation point and the NOx emissions. A numerical model based on a steady RANS approach and the Complex Chemistry model with relevant reactions of the GRI 3.0 mechanism is used to predict the reactive flow and NOx emissions at various pressure conditions. Regarding the turbulence-chemical interaction, the Laminar Flame Concept (LFC) and the Eddy Dissipation Concept (EDC) are compared. The numerical results are validated against experimental results that have been acquired at a high pressure test facility for industrial can-type gas turbine combustors with regard to flame initiation and NOx emissions. The numerical approach is adequate to predict the flame initiation point and NOx emission trends. Interestingly, the flame shifts its initiation point during the pressure increase in upstream direction, whereby the flame attachment shifts from anchoring behind a downstream located bluff body towards anchoring directly at the hydrogen jet. The LFC predicts this change and the NOx emissions more accurately than the EDC. The resulting NOx correlation regarding the pressure is similar to a non-premixed type combustion configuration.}, language = {en} }