@inproceedings{Huening2014, author = {H{\"u}ning, Felix}, title = {Power semiconductors : key components for HEV/EV}, series = {FISITA 2014 World Automotive Congress : 2 - 6 June, Maastricht, the Netherlands International Federation of Automotive Engineering Societies}, booktitle = {FISITA 2014 World Automotive Congress : 2 - 6 June, Maastricht, the Netherlands International Federation of Automotive Engineering Societies}, publisher = {KIVI}, address = {[s.l.]}, pages = {1 USB-Speicherstick}, year = {2014}, language = {en} } @inproceedings{WallnoeferDrathHuening2015, author = {Walln{\"o}fer, Armin and Drath, Rainer and H{\"u}ning, Felix}, title = {Was ist Funktionales Engineering? Einordnung, Definition, Randbedingungen}, series = {Automation 2015 : 16. Branchentreff der Mess- und Automatisierungstechnik, 11. und 12. Juni 2015, Baden-Baden / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, booktitle = {Automation 2015 : 16. Branchentreff der Mess- und Automatisierungstechnik, 11. und 12. Juni 2015, Baden-Baden / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092258-4}, pages = {1 CD-ROM}, year = {2015}, language = {de} } @inproceedings{Huening2016, author = {H{\"u}ning, Felix}, title = {Power Semiconductors for the automotive 48V board net}, series = {PCIM Europe 2016 Conference Proceedings}, booktitle = {PCIM Europe 2016 Conference Proceedings}, publisher = {VDE Verl.}, address = {Berlin}, isbn = {978-3-8007-4186-1}, pages = {1963 -- 1969}, year = {2016}, language = {en} } @inproceedings{HueningHeuermannWache2018, author = {H{\"u}ning, Felix and Heuermann, Holger and Wache, Franz-Josef}, title = {Wireless CAN}, series = {Tagungsband AALE 2018 : das Forum f{\"u}r Fachleute der Automatisierungstechnik aus Hochschulen und Wirtschaft ; 15. Fachkonferenz, Regensburg ; [15. Konferenz f{\"u}r Angewandte Automatisierungstechnik in Lehre und Entwicklung / TH K{\"o}ln; VFAALE, Verein der Freunde und F{\"o}rderer der Angewandten Automatisierungstechnik]}, booktitle = {Tagungsband AALE 2018 : das Forum f{\"u}r Fachleute der Automatisierungstechnik aus Hochschulen und Wirtschaft ; 15. Fachkonferenz, Regensburg ; [15. Konferenz f{\"u}r Angewandte Automatisierungstechnik in Lehre und Entwicklung / TH K{\"o}ln; VFAALE, Verein der Freunde und F{\"o}rderer der Angewandten Automatisierungstechnik]}, publisher = {VDE Verlag}, pages = {135 -- 144}, year = {2018}, abstract = {Das vorgestellte System zu Wireless CAN bietet die M{\"o}glichkeit, CAN kabellos zu {\"u}bertragen. Beide vorgestellten und entwickelten Konzepte funktionieren korrekt und erm{\"o}glichen den Auf-bau von kabellosen CAN Schnittstellen. Durch den kleinen Aufbau kann diese Technologie auch f{\"u}r eingebettete Systeme verwendet werden. Zudem bietet dieser Ansatz die M{\"o}glichkeit, durch die Entwicklung von geeigneten ICs die Gr{\"o}ße des Systems bis auf Bauteilgr{\"o}ße zu reduzieren, um eine noch bessere Integration in eingebettete Systeme zu erm{\"o}glichen. Dadurch wird die Technologie attraktiv f{\"u}r Einsatzgebiete, wo die oben aufgelisteten Vorteile zum Tragen kommen k{\"o}nnen. Diese Einsatzgebiete k{\"o}nnen sowohl im Automobil als auch im Industriebereich liegen.}, language = {de} } @inproceedings{Huening2019, author = {H{\"u}ning, Felix}, title = {Complexity for heterogeneous classes: teaching embedded systems using an open project approach}, series = {Varietas delectat: Complexity is the new normality - 47th Annual Conference, Budapest, Hungary16th - 20th September 2019. SEFI 47th Annual Conference Proceedings}, booktitle = {Varietas delectat: Complexity is the new normality - 47th Annual Conference, Budapest, Hungary16th - 20th September 2019. SEFI 47th Annual Conference Proceedings}, isbn = {978-2-87352-018-2}, pages = {540 -- 549}, year = {2019}, language = {en} } @inproceedings{Huening2021, author = {H{\"u}ning, Felix}, title = {Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students}, series = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, booktitle = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, isbn = {978-2-87352-023-6}, pages = {1405 -- 1409}, year = {2021}, abstract = {The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher's observations of the student's learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching.}, language = {en} } @inproceedings{HueningWacheMagiera2021, author = {H{\"u}ning, Felix and Wache, Franz-Josef and Magiera, David}, title = {Redundant bus systems using dual-mode radio}, series = {Proceedings of Sixth International Congress on Information and Communication Technology}, booktitle = {Proceedings of Sixth International Congress on Information and Communication Technology}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-16-2379-0}, doi = {10.1007/978-981-16-2380-6_73}, pages = {835 -- 842}, year = {2021}, abstract = {Communication via serial bus systems, like CAN, plays an important role for all kinds of embedded electronic and mechatronic systems. To cope up with the requirements for functional safety of safety-critical applications, there is a need to enhance the safety features of the communication systems. One measure to achieve a more robust communication is to add redundant data transmission path to the applications. In general, the communication of real-time embedded systems like automotive applications is tethered, and the redundant data transmission lines are also tethered, increasing the size of the wiring harness and the weight of the system. A radio link is preferred as a redundant transmission line as it uses a complementary transmission medium compared to the wired solution and in addition reduces wiring harness size and weight. Standard wireless links like Wi-Fi or Bluetooth cannot meet the requirements for real-time capability with regard to bus communication. Using the new dual-mode radio enables a redundant transmission line meeting all requirements with regard to real-time capability, robustness and transparency for the data bus. In addition, it provides a complementary transmission medium with regard to commonly used tethered links. A CAN bus system is used to demonstrate the redundant data transfer via tethered and wireless CAN.}, language = {en} } @inproceedings{HueningStuettgen2021, author = {H{\"u}ning, Felix and St{\"u}ttgen, Marcel}, title = {Work in Progress: Interdisciplinary projects in times of COVID-19 crisis - challenges, risks and chances}, series = {2021 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2021 IEEE Global Engineering Education Conference (EDUCON)}, doi = {10.1109/EDUCON46332.2021.9454006}, pages = {1175 -- 1179}, year = {2021}, language = {en} } @inproceedings{OstkottePetersHueningetal.2022, author = {Ostkotte, Sebastian and Peters, Constantin and H{\"u}ning, Felix and Bragard, Michael}, title = {Design, implementation and verification of an rotational incremental position encoder based on the magnetic Wiegand effect}, series = {2022 ELEKTRO (ELEKTRO)}, booktitle = {2022 ELEKTRO (ELEKTRO)}, publisher = {IEEE}, isbn = {978-1-6654-6726-1}, issn = {2691-0616}, doi = {10.1109/ELEKTRO53996.2022.9803477}, pages = {6 Seiten}, year = {2022}, abstract = {This paper covers the use of the magnetic Wiegand effect to design an innovative incremental encoder. First, a theoretical design is given, followed by an estimation of the achievable accuracy and an optimization in open-loop operation. Finally, a successful experimental verification is presented. For this purpose, a permanent magnet synchronous machine is controlled in a field-oriented manner, using the angle information of the prototype.}, language = {en} } @inproceedings{WiegnerVolkerMainzetal.2022, author = {Wiegner, Jonas and Volker, Hanno and Mainz, Fabian and Backes, Andreas and L{\"o}ken, Michael and H{\"u}ning, Felix}, title = {Wiegand-effect-powered wireless IoT sensor node}, series = {Sensoren und Messsysteme 2022}, booktitle = {Sensoren und Messsysteme 2022}, publisher = {VDE Verlag GmbH}, address = {Berlin}, isbn = {978-3-8007-5835-7}, pages = {255 -- 260}, year = {2022}, abstract = {In this article we describe an Internet-of-Things sensing device with a wireless interface which is powered by the oftenoverlooked harvesting method of the Wiegand effect. The sensor can determine position, temperature or other resistively measurable quantities and can transmit the data via an ultra-low power ultra-wideband (UWB) data transmitter. With this approach we can energy-self-sufficiently acquire, process, and wirelessly transmit data in a pulsed operation. A proof-of-concept system was built up to prove the feasibility of the approach. The energy consumption of the system is analyzed and traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof-of-concept, an application demonstrator was developed. Finally, we point out possible use cases.}, language = {en} }