@article{HueningHeuermannWache2018, author = {H{\"u}ning, Felix and Heuermann, Holger and Wache, Franz-Josef}, title = {Wireless CAN}, series = {Etz: Elektrotechnik \& Automation}, volume = {139}, journal = {Etz: Elektrotechnik \& Automation}, number = {10}, publisher = {VDE-Verlag}, address = {Wuppertal}, issn = {0170-1711}, pages = {22 -- 26}, year = {2018}, abstract = {In modernen elektronischen und mechatronischen Systemen, z. B. im industriellen oder automobil Bereich, kommunizieren eingebettete Steuerger{\"a}te und Sensoren vielfach {\"u}ber Bussysteme wie CAN oder LIN. Die Kommunikation findet in der Regel drahtgebunden statt, so dass der Kabelbaum f{\"u}r die Kommunikation sehr groß werden kann. Daher ist es naheliegend, Leitungen und dazugeh{\"o}rige Stecker, z. B. f{\"u}r nicht-sicherheitskritische Komfortsysteme, einzusparen und diese durch gerichtete Funkstrecken f{\"u}r kurze Entfernungen zu ersetzen. Somit k{\"o}nnten Komponenten wie ECUs oder Sensoren kabel- und steckerlos in ein Bussystem integriert werden. Zudem ist eine einfache galvanische und mechanische Trennung zu erreichen. Funk{\"u}bertragung wird bei diesen Bussystemen derzeit nicht eingesetzt, da insbesondere die Echtzeitf{\"a}higkeit und die Robustheit der vorhandenen Funksysteme nicht den Anforderungen der Anwendungen entspricht. Zudem sind bestehende Funksysteme wie WLAN oder Bluetooth im Vergleich zur konventionellen Verkabelung teuer und es besteht hierbei die M{\"o}glichkeit, dass sie ausspioniert werden k{\"o}nnen und so sensible Daten entwendet werden k{\"o}nnen. In dieser Arbeit wird eine alternative Realisierung zu den bestehenden Funksystemen vorgestellt, die aus wenigen Komponenten aufzubauen ist. Es ist eine protokolllose, echtzeitf{\"a}hige {\"U}bertragung m{\"o}glich und somit die transparente Integration in ein Bussystem wie CAN.}, language = {de} } @book{Huening2019, author = {H{\"u}ning, Felix}, title = {Embedded Systems f{\"u}r IoT}, publisher = {Berlin, Heidelberg}, address = {Springer Vieweg}, isbn = {978-3-662-57900-8}, doi = {10.1007/978-3-662-57901-5}, pages = {VIII, 195 Seiten}, year = {2019}, language = {de} } @article{Huening2019, author = {H{\"u}ning, Felix}, title = {Nachr{\"u}stm{\"o}glichkeiten von Dieselfahrzeugen aus technischer Sicht}, series = {Zeitschrift f{\"u}r Verkehrsrecht : NZV}, journal = {Zeitschrift f{\"u}r Verkehrsrecht : NZV}, number = {1}, publisher = {C.H.Beck}, pages = {27 -- 32}, year = {2019}, language = {de} } @article{HueningHeuermannWache2018, author = {H{\"u}ning, Felix and Heuermann, Holger and Wache, Franz-Josef}, title = {Wireless CAN without WLAN or Bluetooth}, series = {CAN Newsletter}, journal = {CAN Newsletter}, number = {December 2018}, pages = {44 -- 46}, year = {2018}, abstract = {In two developed concepts, dual-mode radio enables CAN participants to be integrated wirelessly into a CAN network. Constructed from a few components, a protocol-free, real-time transmission and thus transparent integration into CAN is provided.}, language = {en} } @article{HueningHillgaertnerReke2019, author = {H{\"u}ning, Felix and Hillg{\"a}rtner, Michael and Reke, Michael}, title = {Rolling Labs - Teaching Vehicle Electronics from the Beginning}, series = {International Journal of Engineering Pedagogy (iJEP)}, volume = {9}, journal = {International Journal of Engineering Pedagogy (iJEP)}, number = {1}, issn = {2192-4880}, doi = {10.3991/ijep.v9i1.9241}, pages = {34 -- 49}, year = {2019}, language = {en} } @incollection{RaoPathroseHueningetal.2019, author = {Rao, Deepak and Pathrose, Plato and H{\"u}ning, Felix and Sid, Jithin}, title = {An Approach for Validating Safety of Perception Software in Autonomous Driving Systems}, series = {Model-Based Safety and Assessment: 6th International Symposium, IMBSA 2019, Thessaloniki, Greece, October 16-18, 2019, Proceedings}, booktitle = {Model-Based Safety and Assessment: 6th International Symposium, IMBSA 2019, Thessaloniki, Greece, October 16-18, 2019, Proceedings}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-32872-6}, doi = {10.1007/978-3-030-32872-6_20}, pages = {303 -- 316}, year = {2019}, abstract = {The increasing complexity of Advanced Driver Assistance Systems (ADAS) presents a challenging task to validate safe and reliable performance of these systems under varied conditions. The test and validation of ADAS/AD with real test drives, although important, involves huge costs and time. Simulation tools provide an alternative with the added advantage of reproducibility but often use ideal sensors, which do not reflect real sensor output accurately. This paper presents a new validation methodology using fault injection, as recommended by the ISO 26262 standard, to test software and system robustness. In our work, we investigated and developed a tool capable of inserting faults at different software and system levels to verify its robustness. The scope of this paper is to cover the fault injection test for the Visteon's DriveCore™ system, a centralized domain controller for Autonomous driving which is sensor agnostic and SoC agnostic. With this new approach, the validation of safety monitoring functionality and its behavior can be tested using real-world data instead of synthetic data from simulation tools resulting in having better confidence in system performance before proceeding with in-vehicle testing.}, language = {en} } @inproceedings{Huening2019, author = {H{\"u}ning, Felix}, title = {Complexity for heterogeneous classes: teaching embedded systems using an open project approach}, series = {Varietas delectat: Complexity is the new normality - 47th Annual Conference, Budapest, Hungary16th - 20th September 2019. SEFI 47th Annual Conference Proceedings}, booktitle = {Varietas delectat: Complexity is the new normality - 47th Annual Conference, Budapest, Hungary16th - 20th September 2019. SEFI 47th Annual Conference Proceedings}, isbn = {978-2-87352-018-2}, pages = {540 -- 549}, year = {2019}, language = {en} } @inproceedings{Huening2021, author = {H{\"u}ning, Felix}, title = {Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students}, series = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, booktitle = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, isbn = {978-2-87352-023-6}, pages = {1405 -- 1409}, year = {2021}, abstract = {The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher's observations of the student's learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching.}, language = {en} } @inproceedings{HueningWacheMagiera2021, author = {H{\"u}ning, Felix and Wache, Franz-Josef and Magiera, David}, title = {Redundant bus systems using dual-mode radio}, series = {Proceedings of Sixth International Congress on Information and Communication Technology}, booktitle = {Proceedings of Sixth International Congress on Information and Communication Technology}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-16-2379-0}, doi = {10.1007/978-981-16-2380-6_73}, pages = {835 -- 842}, year = {2021}, abstract = {Communication via serial bus systems, like CAN, plays an important role for all kinds of embedded electronic and mechatronic systems. To cope up with the requirements for functional safety of safety-critical applications, there is a need to enhance the safety features of the communication systems. One measure to achieve a more robust communication is to add redundant data transmission path to the applications. In general, the communication of real-time embedded systems like automotive applications is tethered, and the redundant data transmission lines are also tethered, increasing the size of the wiring harness and the weight of the system. A radio link is preferred as a redundant transmission line as it uses a complementary transmission medium compared to the wired solution and in addition reduces wiring harness size and weight. Standard wireless links like Wi-Fi or Bluetooth cannot meet the requirements for real-time capability with regard to bus communication. Using the new dual-mode radio enables a redundant transmission line meeting all requirements with regard to real-time capability, robustness and transparency for the data bus. In addition, it provides a complementary transmission medium with regard to commonly used tethered links. A CAN bus system is used to demonstrate the redundant data transfer via tethered and wireless CAN.}, language = {en} } @inproceedings{OstkottePetersHueningetal.2022, author = {Ostkotte, Sebastian and Peters, Constantin and H{\"u}ning, Felix and Bragard, Michael}, title = {Design, implementation and verification of an rotational incremental position encoder based on the magnetic Wiegand effect}, series = {2022 ELEKTRO (ELEKTRO)}, booktitle = {2022 ELEKTRO (ELEKTRO)}, publisher = {IEEE}, isbn = {978-1-6654-6726-1}, issn = {2691-0616}, doi = {10.1109/ELEKTRO53996.2022.9803477}, pages = {6 Seiten}, year = {2022}, abstract = {This paper covers the use of the magnetic Wiegand effect to design an innovative incremental encoder. First, a theoretical design is given, followed by an estimation of the achievable accuracy and an optimization in open-loop operation. Finally, a successful experimental verification is presented. For this purpose, a permanent magnet synchronous machine is controlled in a field-oriented manner, using the angle information of the prototype.}, language = {en} }