@article{HarzheimMuehmelHeuermann2021, author = {Harzheim, Thomas and M{\"u}hmel, Marc and Heuermann, Holger}, title = {A SFCW harmonic radar system for maritime search and rescue using passive and active tags}, series = {International Journal of Microwave and Wireless Technologies}, volume = {13}, journal = {International Journal of Microwave and Wireless Technologies}, number = {Special Issue 7}, publisher = {Cambridge University Press}, address = {Cambridge}, doi = {10.1017/S1759078721000520}, pages = {691 -- 707}, year = {2021}, abstract = {This paper introduces a new maritime search and rescue system based on S-band illumination harmonic radar (HR). Passive and active tags have been developed and tested while attached to life jackets and a small boat. In this demonstration test carried out on the Baltic Sea, the system was able to detect and range the active tags up to a distance of 5800 m using an illumination signal transmit-power of 100 W. Special attention is given to the development, performance, and conceptual differences between passive and active tags used in the system. Guidelines for achieving a high HR dynamic range, including a system components description, are given and a comparison with other HR systems is performed. System integration with a commercial maritime X-band navigation radar is shown to demonstrate a solution for rapid search and rescue response and quick localization.}, language = {en} } @article{HeuermannHarzheimCronenbroeck2021, author = {Heuermann, Holger and Harzheim, Thomas and Cronenbroeck, Tobias}, title = {First SIMO harmonic radar based on the SFCW concept and the HR transfer function}, series = {Remote sensing}, volume = {13}, journal = {Remote sensing}, number = {24}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs13245088}, pages = {23 Seiten}, year = {2021}, abstract = {This paper presents a new SIMO radar system based on a harmonic radar (HR) stepped frequency continuous wave (SFCW) architecture. Simple tags that can be electronically individually activated and deactivated via a DC control voltage were developed and combined to form an MO array field. This HR operates in the entire 2.45 GHz ISM band for transmitting the illumination signal and receives at twice the stimulus frequency and bandwidth centered around 4.9 GHz. This paper presents the development, the basic theory of a HR system for the characterization of objects placed into the propagation path in-between the radar and the reflectors (similar to a free-space measurement with a network analyzer) as well as first measurements performed by the system. Further detailed measurement series will be made available later on to other researchers to develop AI and machine learning based signal processing routines or synthetic aperture radar algorithms for imaging, object recognition, and feature extraction. For this purpose, the necessary information is published in this paper. It is explained in detail why this SIMO-HR can be an attractive solution augmenting or replacing existing systems for radar measurements in production technology for material under test measurements and as a simplified MIMO system. The novel HR transfer function, which is a basis for researchers and developers for material characterization or imaging algorithms, is introduced and metrologically verified in a well traceable coaxial setup.}, language = {en} } @article{SchoppDollGraeseretal.2016, author = {Schopp, Christoph and Doll, Timo and Gr{\"a}ser, Ulrich and Harzheim, Thomas and Heuermann, Holger and Kling, Rainer and Marso, Michael}, title = {Capacitively Coupled High-Pressure Lamp Using Coaxial Line Networks}, series = {IEEE Transactions on Microwave Theory and Techniques}, volume = {64}, journal = {IEEE Transactions on Microwave Theory and Techniques}, number = {10}, publisher = {IEEE}, address = {New York, NY}, issn = {0018-9480}, doi = {10.1109/TMTT.2016.2600326}, pages = {3363 -- 3368}, year = {2016}, abstract = {This paper describes the development of a capacitively coupled high-pressure lamp with input power between 20 and 43 W at 2.45 GHz, using a coaxial line network. Compared with other electrodeless lamp systems, no cavity has to be used and a reduction in the input power is achieved. Therefore, this lamp is an alternative to the halogen incandescent lamp for domestic lighting. To serve the demands of domestic lighting, the filling of the lamp is optimized over all other resulting requirements, such as high efficacy at low induced powers and fast startups. A workflow to develop RF-driven plasma applications is presented, which makes use of the hot S-parameter technique. Descriptions of the fitting process inside a circuit and FEM simulator are given. Results of the combined ignition and operation network from simulations and measurements are compared. An initial prototype is built and measurements of the lamp's lighting properties are presented along with an investigation of the efficacy optimizations using large signal amplitude modulation. With this lamp, an efficacy of 135 lmW -1 is achieved.}, language = {en} }