@article{ZischankHeidlerWiesingeretal.2004, author = {Zischank, Wolfgang J. and Heidler, Fridolin and Wiesinger, J. and Metwally, I. and Kern, Alexander and Seevers, M.}, title = {Laboratory simulation of direct lightning strokes to a modeled building : measurement of magnetic fields and included voltages}, series = {Journal of electrostatics. 60 (2004), H. 2 - 4}, journal = {Journal of electrostatics. 60 (2004), H. 2 - 4}, isbn = {0304-3886}, pages = {223 -- 232}, year = {2004}, language = {en} } @inproceedings{ZischankKernFrentzeletal.2000, author = {Zischank, Wolfgang J. and Kern, Alexander and Frentzel, Ralf and Heidler, Fridolin and Seevers, M.}, title = {Assessment of the lightning transient coupling to control cables interconnecting structures in large industrial facilities and power plants}, year = {2000}, abstract = {Large industrial facilities and power plants often require a huge number fo information and control cables between the differnet structures. These I\&C-cables can be routed in reinforced concrete cable ducts or in isolated buried cable runs. KTA 2206 is the German lightning protection standard for nuclear power plants. During the last several years considerable effort has been made to revise this standard. Despite the well established principles and design guidelines for the construction of the lightning protection system, this standard puts special emphasis on the coupling of transient overvoltages to I\&C-cables.}, language = {en} } @inproceedings{KernHeidlerSeeversetal.2004, author = {Kern, Alexander and Heidler, Fridolin and Seevers, M. and Zischank, Wolfgang J.}, title = {Magnetic Fields and Induced Voltages in case of a Direct Strike - Comparison of Results obtained from Measurements at a Scaled Building to those of IEC 62305-4}, isbn = {0304-3886}, year = {2004}, abstract = {In the paper the results obtained from experiments at a modelled reinforced building in case of a direct lightning strike are compared with calculations. The comparison includes peak values of the magnetic field Hmax, its derivative (dH/dt)max and of induced voltages umax in typical cable routings. The experiments are performed at a 1:6 scaled building and the results are extrapolated using the similarity relations theory. The calculations are based on the approximate formulae given in IEC 62305-4 and have to be supplemented by a rough estimation of the additional shielding effect of a second reinforcement layer. The comparison shows, that the measured peak values of the magnetic field and its derivative are mostly lower than the calculated. The induced voltages are in good agreement. Hence, calculations of the induced voltages based on IEC 62305-4 are a good method for lightning protection studies of buildings, where the reinforcement is used as a grid-like electromagnetic shield.}, subject = {Blitz}, language = {en} } @inproceedings{ZischankHeidlerWiesingeretal.2004, author = {Zischank, Wolfgang J. and Heidler, Fridolin and Wiesinger, J. and Stimper, K. and Kern, Alexander and Seevers, M.}, title = {Magnetic Fields and Induced Voltages inside LPZ 1 Measured at a 1:6 Scale Model Building}, year = {2004}, abstract = {Laborexperimente zu Blitzschutzzonen in Stahlbetongeb{\"a}uden anhand eines Modells im Maßstab 1:6}, language = {en} } @inproceedings{ZischankHeidlerKernetal.2002, author = {Zischank, Wolfgang J. and Heidler, Fridolin and Kern, Alexander and Metwally, I. A. and Wiesinger, J. and Seevers, M.}, title = {Laboratory simulation of direct lightning strokes to a modelled building - measurement of magnetic fields and induced voltages}, year = {2002}, abstract = {In IEC 61312-2 equations for the assessment of the magnetic fields inside structures due to a direct lightning strike are given. These equations are based on computer simulations for shields consisting of a single-layer steel grid of a given mesh width. Real constructions, however, contain at least two layers of reinforcement steel grids. The objective of this study was to experimentally determine the additional shielding effectiveness of a second reinforcement layer compared to a single-layer grid. To this end, simulated structures were set up in the high current laboratory. The structures consisted of cubic cages of 2 m side length with one or with two reinforcement grids, respectively. The structures were exposed to direct lightning currents representing the variety of anticipated lightning current waveforms. The magnetic fields and their derivatives at several positions inside the structure as well as the voltage between "floor" and "roof" in the center were determined for different current injection points. From these data the improvement of the shielding caused by a second reinforcement layer is derived.}, language = {en} }