@article{PoghossianPlatenSchoening2005, author = {Poghossian, Arshak and Platen, J. and Sch{\"o}ning, Michael Josef}, title = {Towards self-aligned nanostructures by means of layerexpansion technique}, series = {Electrochimica Acta. 51 (2005), H. 5}, journal = {Electrochimica Acta. 51 (2005), H. 5}, isbn = {0013-4686}, pages = {838 -- 843}, year = {2005}, language = {en} } @article{GlueckSchoeningLuethetal.1999, author = {Gl{\"u}ck, O. and Sch{\"o}ning, Michael Josef and L{\"u}th, H. and Otto, A. and Emons, H.}, title = {Trace metal determination by dc resistance changes of microstructured thin gold film electrodes}, series = {Electrochimica Acta. 44 (1999), H. 21-22}, journal = {Electrochimica Acta. 44 (1999), H. 21-22}, isbn = {0013-4686}, pages = {3761 -- 3768}, year = {1999}, language = {en} } @article{GlueckSchoeningLuethetal.1997, author = {Gl{\"u}ck, O. and Sch{\"o}ning, Michael Josef and L{\"u}th, H. and Emons, H. and Hanewinkel, C. and Schumacher, D. and Otto, A.}, title = {Trace metal determination with gold microelectrodes fabricated by silicon technology}, series = {Proceedings of the 11th European Conference on Solid-State Transducers / Eurosensors XI, September 21 - 24, 1997, Warsaw, Poland. [Organised by] Warsaw University of Technology. Vol 2.}, journal = {Proceedings of the 11th European Conference on Solid-State Transducers / Eurosensors XI, September 21 - 24, 1997, Warsaw, Poland. [Organised by] Warsaw University of Technology. Vol 2.}, publisher = {Sensor Lab Sp.}, address = {Warsaw}, isbn = {83-908335-0-6}, pages = {615 -- 618}, year = {1997}, language = {en} } @article{GunGutkinLevetal.2011, author = {Gun, Jenny and Gutkin, Vitaly and Lev, Ovadia and Boyen, Hans-Gerd and Saitner, Marc and Wagner, Patrick and Olieslaeger, Marc D´ and Abouzar, Maryam H. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Tracing gold nanoparticle charge by electrolyte-insulator-semiconductor devices}, series = {Journal of Physical Chemistry C. 115 (2011), H. 11}, journal = {Journal of Physical Chemistry C. 115 (2011), H. 11}, publisher = {American Cemical Society}, address = {Washington, DC}, isbn = {1932-7455}, pages = {4439 -- 4445}, year = {2011}, language = {en} } @article{JanusAchtsnichtDrinicetal.2023, author = {Janus, Kevin Alexander and Achtsnicht, Stefan and Drinic, Aleksander and Kopp, Alexander and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Transient magnesium-based thin-film temperature sensor on a flexible, bioabsorbable substrate for future medical applications}, series = {Applied Research}, journal = {Applied Research}, number = {Accepted manuscript}, publisher = {Wiley-VCH}, issn = {2702-4288 (Print)}, doi = {10.1002/appl.202300102}, pages = {22 Seiten}, year = {2023}, abstract = {In this work, the bioabsorbable materials, namely fibroin, polylactide acid (PLA), magnesium and magnesium oxide are investigated for their application as transient, resistive temperature detectors (RTD). For this purpose, a thin-film magnesium-based meander-like electrode is deposited onto a flexible, bioabsorbable substrate (fibroin or PLA) and encapsulated (passivated) by additional magnesium oxide layers on top and below the magnesium-based electrode. The morphology of different layered RTDs is analyzed by scanning electron microscopy. The sensor performance and lifetime of the RTD is characterized both under ambient atmospheric conditions between 30°C and 43°C, and wet tissue-like conditions with a constant temperature regime of 37°C. The latter triggers the degradation process of the magnesium-based layers. The 3-layers RTDs on a PLA substrate could achieve a lifetime of 8.5 h. These sensors also show the best sensor performance under ambient atmospheric conditions with a mean sensitivity of 0.48 Ω/°C ± 0.01 Ω/°C.}, language = {en} } @article{NaetherRolkaPoghossianetal.2005, author = {N{\"a}ther, Niko and Rolka, David and Poghossian, Arshak and Koudelka-Hep, M. and Sch{\"o}ning, Michael Josef}, title = {Two microcell flow-injection analysis (FIA) platforms for capacitive silicon-based field-effect sensors}, series = {Electrochimica Acta. 51 (2005), H. 5}, journal = {Electrochimica Acta. 51 (2005), H. 5}, isbn = {0013-4686}, doi = {10.1016/j.electacta.2005.04.066}, pages = {924 -- 929}, year = {2005}, language = {en} } @article{SiqueiraMakiPaulovichetal.2010, author = {Siqueira, Jose R. and Maki, Rafael M. and Paulovich, Fernando V. and Werner, Frederik and Poghossian, Arshak and Oliveira, Maria C. F. de and Zucolotto, Valtencir and Oliveira, Osvaldo N. Jr. and Sch{\"o}ning, Michael Josef}, title = {Use of Information Visualization Methods Eliminating Cross Talk in Multiple Sensing Units Investigated for a Light-Addressable Potentiometric Sensor}, series = {Analytical Chemistry (2010)}, journal = {Analytical Chemistry (2010)}, isbn = {0003-2700}, pages = {61 -- 65}, year = {2010}, language = {en} } @article{BohrnStuetzFleischeretal.2013, author = {Bohrn, Ulrich and St{\"u}tz, Evamaria and Fleischer, Maximilian and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Using a cell-based gas biosensor for investigation of adverse effects of acetone vapors in vitro}, series = {Biosensors and Bioelectronics. 40 (2013), H. 1}, journal = {Biosensors and Bioelectronics. 40 (2013), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0956-5663}, pages = {393 -- 400}, year = {2013}, language = {en} } @article{WagnerMiyamotoWerneretal.2011, author = {Wagner, Torsten and Miyamoto, K. and Werner, Frederik and Sch{\"o}ning, Michael Josef and Yoshinobu, T.}, title = {Utilising Digital Micro-Mirror Device (DMD) as Scanning Light Source for Light-Addressable Potentiometric Sensors (LAPS)}, volume = {9}, number = {2}, publisher = {American Scientific Publishers}, address = {Stevenson Ranch, Calif.}, doi = {10.1166/sl.2011.1620}, pages = {812 -- 815}, year = {2011}, language = {en} } @article{MiyamotoBingWagneretal.2015, author = {Miyamoto, Ko-ichiro and Bing, Yu and Wagner, Torsten and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Visualization of Defects on a Cultured Cell Layer by Utilizing Chemical Imaging Sensor}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.806}, pages = {936 -- 939}, year = {2015}, abstract = {The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) inthe sample. In this study, a novel wound-healing assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the defect of a cell layer brought into proximity of the sensing surface.A reduced impedance inside the defect, which was artificially formed ina cell layer, was successfully visualized in a photocurrent image.}, language = {en} }