@inproceedings{LorenzAltherrPelz2020, author = {Lorenz, Imke-Sophie and Altherr, Lena and Pelz, Peter F.}, title = {Assessing and Optimizing the Resilience of Water Distribution Systems Using Graph-Theoretical Metrics}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, editor = {Neufeld, Janis S. and Buscher, Udo and Lasch, Rainer and M{\"o}st, Dominik and Sch{\"o}nberger, J{\"o}rn}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48439-2}, doi = {10.1007/978-3-030-48439-2_63}, pages = {521 -- 527}, year = {2020}, abstract = {Water distribution systems are an essential supply infrastructure for cities. Given that climatic and demographic influences will pose further challenges for these infrastructures in the future, the resilience of water supply systems, i.e. their ability to withstand and recover from disruptions, has recently become a subject of research. To assess the resilience of a WDS, different graph-theoretical approaches exist. Next to general metrics characterizing the network topology, also hydraulic and technical restrictions have to be taken into account. In this work, the resilience of an exemplary water distribution network of a major German city is assessed, and a Mixed-Integer Program is presented which allows to assess the impact of capacity adaptations on its resilience.}, language = {en} }