@article{DantismTakenagaWagneretal.2016, author = {Dantism, Shahriar and Takenaga, Shoko and Wagner, Patrick and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli K12 with a multi-​chamber-​based LAPS system}, series = {Physica status solidi (a)}, volume = {213}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201533043}, pages = {1479 -- 1485}, year = {2016}, abstract = {On-line monitoring of the metabolic activity of microorganisms involved in intermediate stages of biogas production plays an important role to avoid undesirable "down times" during the biogas production. In order to control this process, an on-chip differential measuring system based on the light-addressable potentiometric sensor (LAPS) principle combined with a 3D-printed multi-chamber structure has been realized. As a test microorganism, Escherichia coli K12 (E. coli K12) were used for cell-based measurements. Multi-chamber structures were developed to determine the metabolic activity of E. coli K12 in suspension for a different number of cells, responding to the addition of a constant or variable amount of glucose concentrations, enabling differential and simultaneous measurements.}, language = {en} } @article{DantismTakenagaWagneretal.2017, author = {Dantism, Shahriar and Takenaga, Shoko and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors}, series = {Electrochimica Acta}, volume = {246}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.05.196}, pages = {234 -- 241}, year = {2017}, language = {en} } @article{DantismRoehlenWagneretal.2018, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Optimization of Cell-Based Multi-Chamber LAPS Measurements Utilizing FPGA-Controlled Laser-Diode Modules}, series = {physica status solidi a : applications and materials sciences}, volume = {215}, journal = {physica status solidi a : applications and materials sciences}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201800058}, pages = {Article number 1800058}, year = {2018}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric device, which detects concentration changes of an analyte solution on the sensor surface in a spatially resolved way. It uses a light source to generate electron-hole pairs inside the semiconductor, which are separated in the depletion region due to an applied bias voltage across the sensor structure and hence, a surface-potential-dependent photocurrent can be read out. However, depending on the beam angle of the light source, scattering effects can occur, which influence the recorded signal in LAPS-based differential measurements. To solve this problem, a novel illumination unit based on a field programmable gate array (FPGA) consisting of 16 small-sized tunable infrared laser-diode modules (LDMs) is developed. Due to the improved focus of the LDMs with a beam angle of only 2 mrad, undesirable scattering effects are minimized. Escherichia coli (E. coli) K12 bacteria are used as a test microorganism to study the extracellular acidification on the sensor surface. Furthermore, a salt bridge chamber is built up and integrated with the LAPS system enabling multi-chamber differential measurements with a single Ag/AgCl reference electrode.}, language = {en} } @article{DantismRoehlenWagneretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Wagner, Torsten and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19214692}, pages = {Article number 4692}, year = {2019}, language = {en} } @article{DantismRoehlenDahmenetal.2020, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Dahmen, Markus and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {LAPS-based monitoring of metabolic responses of bacterial cultures in a paper fermentation broth}, series = {Sensors and Actuators B: Chemical}, volume = {320}, journal = {Sensors and Actuators B: Chemical}, number = {Art. 128232}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2020.128232}, year = {2020}, abstract = {As an alternative renewable energy source, methane production in biogas plants is gaining more and more attention. Biomass in a bioreactor contains different types of microorganisms, which should be considered in terms of process-stability control. Metabolically inactive microorganisms within the fermentation process can lead to undesirable, time-consuming and cost-intensive interventions. Hence, monitoring of the cellular metabolism of bacterial populations in a fermentation broth is crucial to improve the biogas production, operation efficiency, and sustainability. In this work, the extracellular acidification of bacteria in a paper-fermentation broth is monitored after glucose uptake, utilizing a differential light-addressable potentiometric sensor (LAPS) system. The LAPS system is loaded with three different model microorganisms (Escherichia coli, Corynebacterium glutamicum, and Lactobacillus brevis) and the effect of the fermentation broth at different process stages on the metabolism of these bacteria is studied. In this way, different signal patterns related to the metabolic response of microorganisms can be identified. By means of calibration curves after glucose uptake, the overall extracellular acidification of bacterial populations within the fermentation process can be evaluated.}, language = {en} } @article{DantismRoehlenSelmeretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Selmer, Thorsten and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system}, series = {Biosensors and Bioelectronics}, volume = {139}, journal = {Biosensors and Bioelectronics}, number = {111332}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2019.111332}, year = {2019}, language = {en} }