@article{ReisertHenkelSchneideretal.2010, author = {Reisert, Steffen and Henkel, Hartmut and Schneider, Andreas and Sch{\"a}fer, Daniel and Friedrich, Peter and Berger, J{\"o}rg and Sch{\"o}ning, Michael Josef}, title = {Development of a handheld sensor system for the online measurement of hydrogen peroxide in aseptic filling systems}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {913 -- 918}, year = {2010}, language = {en} } @article{ReisertHenkelSchneideretal.2009, author = {Reisert, Steffen and Henkel, H. and Schneider, A. and Sch{\"a}fer, D. and Friedrich, P. and Berger, J. and Sch{\"o}ning, Michael Josef}, title = {Entwicklung eines Handheld-Sensorsystems f{\"u}r die „On-line"-Messung der H2O2-Konzentration in aseptischen Entkeimungsprozessen}, series = {9. Dresdner Sensor-Symposium : Dresden, 07.-09. Dezember 2009 / Gerlach, Gerald ; Hauptmann, Peter [Hrsg.]}, journal = {9. Dresdner Sensor-Symposium : Dresden, 07.-09. Dezember 2009 / Gerlach, Gerald ; Hauptmann, Peter [Hrsg.]}, publisher = {TUDpress}, address = {Dresden}, isbn = {978-3-941298-44-6}, pages = {285 -- 288}, year = {2009}, language = {de} } @article{ReisertGeisslerFloerkeetal.2011, author = {Reisert, Steffen and Geissler, Hanno and Fl{\"o}rke, Rudolf and N{\"a}ther, Niko and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Towards a multi-sensor system for the evaluation of aseptic processes employing hydrogen peroxide vapour (H2O2)}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1351 -- 1356}, year = {2011}, language = {en} } @article{ReisertGeisslerFlorkeetal.2011, author = {Reisert, Steffen and Geissler, H. and Florke, R. and Wagner, P. and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Controlling aseptic sterilization processes by means of a multi-sensor system}, publisher = {IEEE}, address = {New York}, pages = {18 -- 22}, year = {2011}, language = {en} } @inproceedings{ReisertGeisslerFloerkeetal.2012, author = {Reisert, Steffen and Geissler, H. and Fl{\"o}rke, R. and Weiler, C. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Characterisation of aseptic sterilisation processes using an electronic nose}, series = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, booktitle = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, editor = {Abdelghani, Adnane and Sch{\"o}ning, Michael Josef}, pages = {45 -- 45}, year = {2012}, language = {en} } @article{KirchnerReisertPuetzetal.2012, author = {Kirchner, Patrick and Reisert, Steffen and P{\"u}tz, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Characterisation of polymeric materials as passivation layer for calorimetric H2O2 gas sensors}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100773}, pages = {859 -- 863}, year = {2012}, abstract = {Calorimetric gas sensors for monitoring the H₂O₂ concentration at elevated temperatures in industrial sterilisation processes have been presented in previous works. These sensors are built up in form of a differential set-up of a catalytically active and passive temperature-sensitive structure. Although, various types of catalytically active dispersions have been studied, the passivation layer has to be established and therefore, chemically as well as physically characterised. In the present work, fluorinated ethylene propylene (FEP), perfluoralkoxy (PFA) and epoxy-based SU-8 photoresist as temperature-stable polymeric materials have been investigated for sensor passivation in terms of their chemical inertness against H₂O₂, their hygroscopic properties as well as their morphology. The polymeric materials were deposited via spin-coating on the temperature-sensitive structure, wherein spin-coated FEP and PFA show slight agglomerates. However, they possess a low absorption of humidity due to their hydrophobic surface, whereas the SU-8 layer has a closed surface but shows a slightly higher absorption of water. All of them were inert against gaseous H₂O₂ during the characterisation in H₂O₂ atmosphere that demonstrates their suitability as passivation layer for calorimetric H₂O₂ gas sensors.}, language = {en} } @article{ReisertGeisslerFloerkeetal.2013, author = {Reisert, Steffen and Geissler, Hanno and Fl{\"o}rke, Rudolf and Weiler, Christian and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Characterisation of aseptic sterilisation processes using an electronic nose}, series = {International journal of nanotechnology}, volume = {Vol. 10}, journal = {International journal of nanotechnology}, number = {No. 5-7}, publisher = {Inderscience Enterprises}, address = {Gen{\`e}ve}, issn = {1475-7435 (Print) 7141-8151 (Online)}, pages = {470 -- 484}, year = {2013}, language = {en} } @inproceedings{OberlaenderReisertKirchneretal.2013, author = {Oberl{\"a}nder, Jan and Reisert, Steffen and Kirchner, Patrick and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Kalorimetrische Gassensoren zur H2O2-Detektion in aseptischen Sterilisationsprozessen}, series = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, booktitle = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, organization = {Dresdner Sensor-Symposium <11, 2013>}, isbn = {978-3-9813484-5-3}, pages = {234 -- 238}, year = {2013}, language = {de} } @article{ReisertGeisslerWeileretal.2015, author = {Reisert, Steffen and Geissler, H. and Weiler, C. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Multiple sensor-type system for monitoring the microbicidal effectiveness of aseptic sterilisation processes}, series = {Food control}, volume = {47}, journal = {Food control}, issn = {1873-7129 (E-Journal); 0956-7135 (Print)}, doi = {10.1016/j.foodcont.2014.07.063}, pages = {615 -- 622}, year = {2015}, abstract = {The present work describes a novel multiple sensor-type system for the real-time analysis of aseptic sterilisation processes employing gaseous hydrogen peroxide (H2O2) as a sterilant. The inactivation kinetics of Bacillus atrophaeus by gaseous H2O2 have been investigated by means of a methodical calibration experiment, taking into account the process variables H2O2 concentration, humidity and gas temperature. It has been found that the microbicidal effectiveness at H2O2 concentrations above 2\% v/v is largely determined by the concentration itself, while at lower H2O2 concentrations, the gas temperature and humidity play a leading role. Furthermore, the responses of different types of gas sensors towards the influencing factors of the sterilisation process have been analysed within the same experiment. Based on a correlation established between the inactivation kinetics and the sensor responses, a calorimetric H2O2 sensor and a metal-oxide semiconductor (MOX) sensor have been identified as possible candidates for monitoring the microbicidal effectiveness of aseptic sterilisation processes employing gaseous H2O2. Therefore, two linear models that describe the relationship between sensor response and microbicidal effectiveness have been proposed.}, language = {en} } @incollection{KirchnerReisertSchoening2014, author = {Kirchner, Patrick and Reisert, Steffen and Sch{\"o}ning, Michael Josef}, title = {Calorimetric gas sensors for hydrogen peroxide monitoring in aseptic food processes}, series = {Gas sensing fundamentals. (Springer Series on Chemical Sensors and Biosensors ; 15)}, booktitle = {Gas sensing fundamentals. (Springer Series on Chemical Sensors and Biosensors ; 15)}, publisher = {Springer}, address = {Heidelberg}, isbn = {978-3-642-54518-4 (Print) ; 978-3-642-54519-1 (Online)}, doi = {10.1007/5346_2013_51}, pages = {279 -- 309}, year = {2014}, abstract = {For the sterilisation of aseptic food packages it is taken advantage of the microbicidal properties of hydrogen peroxide (H2O2). Especially, when applied in vapour phase, it has shown high potential of microbial inactivation. In addition, it offers a high environmental compatibility compared to other chemical sterilisation agents, as it decomposes into oxygen and water, respectively. Due to a lack in sensory detection possibilities, a continuous monitoring of the H2O2 concentration was recently not available. Instead, the sterilisation efficacy is validated using microbiological tests. However, progresses in the development of calorimetric gas sensors during the last 7 years have made it possible to monitor the H2O2 concentration during operation. This chapter deals with the fundamentals of calorimetric gas sensing with special focus on the detection of gaseous hydrogen peroxide. A sensor principle based on a calorimetric differential set-up is described. Special emphasis is given to the sensor design with respect to the operational requirements under field conditions. The state-of-the-art regarding a sensor set-up for the on-line monitoring and secondly, a miniaturised sensor for in-line monitoring are summarised. Furthermore, alternative detection methods and a novel multi-sensor system for the characterisation of aseptic sterilisation processes are described.}, language = {en} } @article{HuckPoghossianBaeckeretal.2014, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Reisert, Steffen and Schubert, J. and Zander, W. and Begoyan, V. K. and Buniatyan, V. V. and Sch{\"o}ning, Michael Josef}, title = {Chemical sensors based on a high-k perovskite oxide of barium strontium titanate}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.258}, pages = {28 -- 31}, year = {2014}, abstract = {High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors for liquids. In this work, BST films have been applied as a sensitive transducer material for a label-free detection of adsorbed charged macromolecules (positively charged polyelectrolytes) and concentration of hydrogen peroxide vapor as well as protection insulator layer for a contactless electrolyte-conductivity sensor. The experimental results of characterization of individual sensors are presented. Special emphasis is devoted towards the development of a capacitively-coupled contactless electrolyte-conductivity sensor.}, language = {en} } @article{HuckPoghossianBaeckeretal.2015, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Reisert, Steffen and Kramer, Friederike and Begoyan, Vardges K. and Buniatyan, Vahe V. and Sch{\"o}ning, Michael Josef}, title = {Multi-parameter sensing using high-k oxide of barium strontium titanate}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431911}, pages = {1259}, year = {2015}, abstract = {High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors. In this work, a Si-based sensor chip containing Pt interdigitated electrodes covered with a thin BST layer (485 nm) has been developed for multi-parameter chemical sensing. The chip has been applied for the contactless measurement of the electrolyte conductivity, the detection of adsorbed charged macromolecules (positively charged polyelectrolytes of polyethylenimine) and the concentration of hydrogen peroxide (H2O2) vapor. The experimental results of functional testing of individual sensors are presented. The mechanism of the BST sensitivity to charged polyelectrolytes and H2O2 vapor has been proposed and discussed.}, language = {en} } @article{ReisertSchneiderGeissleretal.2013, author = {Reisert, Steffen and Schneider, Benno and Geissler, Hanno and Gompel, Matthias van and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Multi-sensor chip for the investigation of different types of metal oxides for the detection of H2O2 in the ppm range}, series = {physica status solidi (a)}, volume = {210}, journal = {physica status solidi (a)}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, pages = {898 -- 904}, year = {2013}, abstract = {In this work, a multi-sensor chip for the investigation of the sensing properties of different types of metal oxides towards hydrogen peroxide in the ppm range is presented. The fabrication process and physical characterization of the multi-sensor chip are described. Pure SnO2 and WO3 as well as Pd- and Pt-doped SnO2 films are characterized in terms of their sensitivity to H2O2. The sensing films have been prepared by drop-coating of water-dispensed nano-powders. A physical characterization, including scanning electron microscopy and X-ray diffraction analysis of the deposited metal-oxide films, was done. From the measurements in hydrogen peroxide atmosphere, it could be shown, that all of the tested metal oxide films are suitable for the detection of H2O2 in the ppm range. The highest sensitivity and reproducibility was achieved using Pt-doped SnO2. Calibration plot of a SnO2, WO3, Pt-, and Pd-doped SnO2 gas sensor for H2O2 concentrations in the ppm range.}, language = {en} } @article{HennemannKohlReisertetal.2013, author = {Hennemann, J{\"o}rg and Kohl, Claus-Dieter and Reisert, Steffen and Kirchner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Copper oxide nanofibres for detection of hydrogen peroxide vapour at high concentrations}, series = {physica status solidi (a)}, volume = {210}, journal = {physica status solidi (a)}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201200775}, pages = {859 -- 863}, year = {2013}, abstract = {We present a sensor concept based on copper(II)oxide (CuO) nanofibres for the detection of hydrogen peroxide (H2O2) vapour in the percent per volume (\% v/v) range. The fibres were produced by using the electrospinning technique. To avoid water condensation in the pores, the fibres were initially modified by an exposure to H2S to get an enclosed surface. By a thermal treatment at 350 °C the fibres were oxidised back to CuO. Thereby, the visible pores disappear which was verified by SEM analysis. The fibres show a decrease of resistance with increasing H2O2 concentration which is due to the fact that hydrogen peroxide is an oxidising gas and CuO a p-type semiconductor. The sensor shows a change of resistance within the minute range to the exposure until the maximum concentration of 6.9\% v/v H2O2. At operating temperatures below 450 °C the corresponding sensor response to a concentration of 4.1\% v/v increases. The sensor shows a good reproducibility of the signal at different measurements. CuO seems to be a suitable candidate for the detection of H2O2 vapour at high concentrations. Resistance behaviour of the sensor under exposure to H2O2 vapours between 2.3 and 6.9\% v/v at an operating temperature of 450 °C.}, language = {en} }