@inproceedings{KaschSchmidtEichleretal.2020, author = {Kasch, Susanne and Schmidt, Thomas and Eichler, Fabian and Thurn, Laura and Jahn, Simon and Bremen, Sebastian}, title = {Solution approaches and process concepts for powder bed-based melting of glass}, series = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, booktitle = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-54333-4 (Print)}, doi = {10.1007/978-3-030-54334-1_7}, pages = {82 -- 95}, year = {2020}, abstract = {In the study, the process chain of additive manufacturing by means of powder bed fusion will be presented based on the material glass. In order to reliably process components additively, new concepts with different solutions were developed and investigated. Compared to established metallic materials, the properties of glass materials differ significantly. Therefore, the process control was adapted to the material glass in the investigations. With extensive parameter studies based on various glass powders such as borosilicate glass and quartz glass, scientifically proven results on powder bed fusion of glass are presented. Based on the determination of the particle properties with different methods, extensive investigations are made regarding the melting behavior of glass by means of laser beams. Furthermore, the experimental setup was steadily expanded. In addition to the integration of coaxial temperature measurement and regulation, preheating of the building platform is of major importance. This offers the possibility to perform 3D printing at the transformation temperatures of the glass materials. To improve the component's properties, the influence of a subsequent heat treatment was also investigated. The experience gained was incorporated into a new experimental system, which allows a much better exploration of the 3D printing of glass. Currently, studies are being conducted to improve surface texture, building accuracy, and geometrical capabilities using three-dimensional specimen. The contribution shows the development of research in the field of 3D printing of glass, gives an insight into the machine and process engineering as well as an outlook on the possibilities and applications.}, language = {en} } @article{KaschSchmidtJahnetal.2021, author = {Kasch, Susanne and Schmidt, Thomas and Jahn, Simon and Eichler, Fabian and Thurn, Laura and Bremen, Sebastian}, title = {L{\"o}sungsans{\"a}tze und Verfahrenskonzepte zum Laserstrahlschmelzen von Glas}, series = {Schweissen und Schneiden}, volume = {73}, journal = {Schweissen und Schneiden}, number = {Heft 1-2}, publisher = {DVS Verlag}, address = {D{\"u}sseldorf}, isbn = {0036-7184}, pages = {32 -- 39}, year = {2021}, language = {de} } @inproceedings{EichlerSkupinThurnetal.2019, author = {Eichler, Fabian and Skupin, Marco and Thurn, Laura and Kasch, Susanne and Schmidt, Thomas}, title = {Operating limits for beam melting of glass materials}, series = {Modern Technologies in Manufacturing (MTeM 2019)}, volume = {299}, booktitle = {Modern Technologies in Manufacturing (MTeM 2019)}, number = {Article 01004}, doi = {10.1051/matecconf/201929901004}, pages = {8 Seiten}, year = {2019}, abstract = {Laser-based Additive Manufacturing (AM) processes for the use of metals out of the powder bed have been investigated profusely and are prevalent in industry. Although there is a broad field of application, Laser Powder Bed Fusion (LPBF), also known as Selective Laser Melting (SLM) of glass is not fully developed yet. The material properties of glass are significantly different from the investigated metallic material for LPBF so far. As such, the process cannot be transferred, and the parameter limits and the process sequence must be redefined for glass. Starting with the characterization of glass powders, a parameter field is initially confined to investigate the process parameter of different glass powder using LPBFprocess. A feasibility study is carried out to process borosilicate glass powder. The effects of process parameters on the dimensional accuracy of fabricated parts out of borosilicate and hints for the post-processing are analysed and presented in this paper.}, language = {en} } @inproceedings{SchmidtKaschEichleretal.2021, author = {Schmidt, Thomas and Kasch, Susanne and Eichler, Fabian and Thurn, Laura}, title = {Process strategies on laser-based melting of glass powder}, series = {Lasers in Manufacturing Conference 2021}, booktitle = {Lasers in Manufacturing Conference 2021}, pages = {10 Seiten}, year = {2021}, abstract = {This paper presents the laser-based powder bed fusion (L-PBF) using various glass powders (borosilicate and quartz glass). Compared to metals, these require adapted process strategies. First, the glass powders were characterized with regard to their material properties and their processability in the powder bed. This was followed by investigations of the melting behavior of the glass powders with different laser wavelengths (10.6 µm, 1070 nm). In particular, the experimental setup of a CO2 laser was adapted for the processing of glass powder. An experimental setup with integrated coaxial temperature measurement/control and an inductively heatable build platform was created. This allowed the L-PBF process to be carried out at the transformation temperature of the glasses. Furthermore, the component's material quality was analyzed on three-dimensional test specimen with regard to porosity, roughness, density and geometrical accuracy in order to evaluate the developed L-PBF parameters and to open up possible applications.}, language = {en} }