@article{GuoSekiMiyamotoetal.2014, author = {Guo, Yuanyuan and Seki, Kosuke and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Novel photoexcitation method for light-addressable potentiometric sensor with higher spatial resolution}, series = {Applied physics express : APEX}, volume = {7}, journal = {Applied physics express : APEX}, number = {6}, publisher = {IOP}, address = {Bristol}, issn = {1882-0786 (E-Journa); 1882-0778 (Print)}, doi = {10.7567/APEX.7.067301}, pages = {067301-4}, year = {2014}, abstract = {A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) is proposed to achieve a higher spatial resolution of chemical images. The proposed method employs a combined light source that consists of a modulated light probe, which generates the alternating photocurrent signal, and a ring of constant illumination surrounding it. The constant illumination generates a sheath of carriers with increased concentration which suppresses the spread of photocarriers by enhanced recombination. A device simulation was carried out to verify the effect of constant illumination on the spatial resolution, which demonstrated that a higher spatial resolution can be obtained.}, language = {en} } @article{GuoMiyamotoWagneretal.2014, author = {Guo, Yuanyuan and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Theoretical study and simulation of light-addressable potentiometric sensors}, series = {Physica status solidi (A) : applications and materials}, volume = {211}, journal = {Physica status solidi (A) : applications and materials}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0031-8965}, doi = {10.1002/pssa.201330354}, pages = {1467 -- 1472}, year = {2014}, abstract = {The light-addressable potentiometric sensor (LAPS) is a semiconductor-based potentiometric sensor using a light probe with an ability of detecting the concentration of biochemical species in a spatially resolved manner. As an important biomedical sensor, research has been conducted to improve its performance, for instance, to realize high-speed measurement. In this work, the idea of facilitating the device-level simulation, instead of using an equivalent-circuit model, is presented for detailed analysis and optimization of the performance of the LAPS. Both carrier distribution and photocurrent response have been simulated to provide new insight into both amplitude-mode and phase-mode operations of the LAPS. Various device parameters can be examined to effectively design and optimize the LAPS structures and setups for enhanced performance.}, language = {en} } @article{GuoMiyamotoWagneretal.2014, author = {Guo, Yuanyuan and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution}, series = {Sensors and actuators B: Chemical}, volume = {204}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.08.016}, pages = {659 -- 665}, year = {2014}, abstract = {As a semiconductor-based electrochemical sensor, the light-addressable potentiometric sensor (LAPS) can realize two dimensional visualization of (bio-)chemical reactions at the sensor surface addressed by localized illumination. Thanks to this imaging capability, various applications in biochemical and biomedical fields are expected, for which the spatial resolution is critically significant. In this study, therefore, the spatial resolution of the LAPS was investigated in detail based on the device simulation. By calculating the spatiotemporal change of the distributions of electrons and holes inside the semiconductor layer in response to a modulated illumination, the photocurrent response as well as the spatial resolution was obtained as a function of various parameters such as the thickness of the Si substrate, the doping concentration, the wavelength and the intensity of illumination. The simulation results verified that both thinning the semiconductor substrate and increasing the doping concentration could improve the spatial resolution, which were in good agreement with known experimental results and theoretical analysis. More importantly, new findings of interests were also obtained. As for the dependence on the wavelength of illumination, it was found that the known dependence was not always the case. When the Si substrate was thick, a longer wavelength resulted in a higher spatial resolution which was known by experiments. When the Si substrate was thin, however, a longer wavelength of light resulted in a lower spatial resolution. This finding was explained as an effect of raised concentration of carriers, which reduced the thickness of the space charge region. The device simulation was found to be helpful to understand the relationship between the spatial resolution and device parameters, to understand the physics behind it, and to optimize the device structure and measurement conditions for realizing higher performance of chemical imaging systems.}, language = {en} } @article{YoshinobuMiyamotoWagneretal.2015, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor}, series = {Sensors and actuators B: Chemical}, volume = {207, Part B}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.09.002}, pages = {926 -- 932}, year = {2015}, abstract = {The light-addressable potentiometric sensor (LAPS) is an electrochemical sensor with a field-effect structure to detect the variation of the Nernst potential at its sensor surface, the measured area on which is defined by illumination. Thanks to this light-addressability, the LAPS can be applied to chemical imaging sensor systems, which can visualize the two-dimensional distribution of a particular target ion on the sensor surface. Chemical imaging sensor systems are expected to be useful for analysis of reaction and diffusion in various electrochemical and biological samples. Recent developments of LAPS-based chemical imaging sensor systems, in terms of the spatial resolution, measurement speed, image quality, miniaturization and integration with microfluidic devices, are summarized and discussed.}, language = {en} } @article{GuoSekiMiyamotoetal.2014, author = {Guo, Yuanyuan and Seki, Kosuke and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Device simulation of the light-addressable potentiometric sensor with a novel photoexcitation method for a higher spatial resolution}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.369}, pages = {456 -- 459}, year = {2014}, abstract = {A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) realized a higher spatial resolution of chemical imaging. In this method, a modulated light probe, which generates the alternating photocurrent signal, is surrounded by a ring of constant light, which suppresses the lateral diffusion of photocarriers by enhancing recombination. A device simulation verified that a higher spatial resolution could be obtained by adjusting the gap between the modulated and constant light. It was also found that a higher intensity and a longer wavelength of constant light was more effective. However, there exists a tradeoff between the spatial resolution and the amplitude of the photocurrent, and thus, the signal-to-noise ratio. A tilted incidence of constant light was applied, which could achieve even higher resolution with a smaller loss of photocurrent.}, language = {en} } @inproceedings{SchoeningAbouzarWagneretal.2006, author = {Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Wagner, Torsten and N{\"a}ther, Niko and Rolka, David and Yoshinobu, Tatsuo and Kloock, Joachim P. and Turek, Monika and Ingebrandt, Sven and Poghossian, Arshak}, title = {A semiconductor-based field-effect platform for (bio-)chemical and physical sensors: From capacitive EIS sensors and LAPS over ISFETs to nano-scale devices}, series = {MRS Proceedings}, booktitle = {MRS Proceedings}, doi = {10.1557/PROC-0952-F08-02}, pages = {1 -- 9}, year = {2006}, language = {en} } @inproceedings{MoritzYoshinobuFingeretal.2003, author = {Moritz, Werner and Yoshinobu, Tatsuo and Finger, Friedhelm and Krause, Steffi and Sch{\"o}ning, Michael Josef}, title = {Amorphous silicon as semiconductor material for high resolution LAPS}, series = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, booktitle = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, pages = {48 -- 49}, year = {2003}, language = {en} } @article{MiyamotoBingWagneretal.2015, author = {Miyamoto, Ko-ichiro and Bing, Yu and Wagner, Torsten and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Visualization of Defects on a Cultured Cell Layer by Utilizing Chemical Imaging Sensor}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.806}, pages = {936 -- 939}, year = {2015}, abstract = {The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) inthe sample. In this study, a novel wound-healing assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the defect of a cell layer brought into proximity of the sensing surface.A reduced impedance inside the defect, which was artificially formed ina cell layer, was successfully visualized in a photocurrent image.}, language = {en} } @article{YoshinobuMoritzFingeretal.2006, author = {Yoshinobu, Tatsuo and Moritz, Werner and Finger, Friedhelm and Sch{\"o}ning, Michael Josef}, title = {Application of thin-film amorphous silicon to chemical imaging}, series = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, journal = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, number = {Paper 0910-A-20-01}, editor = {Comini, Elisabetta}, isbn = {9781558998711}, pages = {1 -- 10}, year = {2006}, language = {en} } @article{MiyamatoSakakitaWagneretal.2015, author = {Miyamato, Ko-ichiro and Sakakita, Sakura and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface}, series = {Electrochimica Acta}, volume = {183}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2015.07.184}, pages = {137 -- 142}, year = {2015}, abstract = {The chemical imaging sensor was applied to in-situ pH imaging of the solution in the vicinity of a corroding surface of stainless steel under potentiostatic polarization. A test piece of polished stainless steel was placed on the sensing surface leaving a narrow gap filled with artificial seawater and the stainless steel was corroded under polarization. The pH images obtained during polarization showed correspondence between the region of lower pH and the site of corrosion. It was also found that the pH value in the gap became as low as 2 by polarization, which triggered corrosion.}, language = {en} }