@article{WagnerMolinaYoshinobuetal.2007, author = {Wagner, Torsten and Molina, Roberto and Yoshinobu, Tatsuo and Kloock, Joachim P. and Biselli, Manfred and Canzoneri, Michele and Schnitzler, Thomas and Sch{\"o}ning, Michael Josef}, title = {Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications}, series = {Electrochimica Acta. 53 (2007), H. 2}, journal = {Electrochimica Acta. 53 (2007), H. 2}, isbn = {0013-4686}, pages = {305 -- 311}, year = {2007}, language = {en} } @article{WagnerMolinaBisellietal.2007, author = {Wagner, Torsten and Molina, R. and Biselli, Manfred and Canzoneri, Michele and Schnitzler, Thomas and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {A light-addressable potentiometric sensor system for fast, simultaneous and spatial detection of the metabolic activity of biological cells}, series = {Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.)}, journal = {Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.)}, publisher = {IEEE}, address = {Piscataway}, isbn = {1-4244-0841-5}, pages = {1107 -- 1110}, year = {2007}, language = {en} } @inproceedings{TakenagaHerreraWerneretal.2013, author = {Takenaga, Shoko and Herrera, Cony F. and Werner, Frederik and Biselli, Manfred and Schnitzler, Thomas and Sch{\"o}ning, Michael Josef and {\"O}hlschl{\"a}ger, Peter and Wagner, Torsten}, title = {Detection of the metabolic activity of cells by differential measurements based on a single light-addressable potentiometric sensor chip}, series = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, booktitle = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, organization = {Dresdner Sensor-Symposium <11, 2013>}, isbn = {978-3-9813484-5-3}, pages = {63 -- 67}, year = {2013}, language = {en} } @article{TakenagaBiselliSchnitzleretal.2014, author = {Takenaga, Shoko and Biselli, Manfred and Schnitzler, Thomas and {\"O}hlschl{\"a}ger, Peter and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Toward multi-analyte bioarray sensors: LAPS-based on-chip determination of a Michaelis-Menten-like kinetics for cell culturing}, series = {Physica status solidi A : Applications and materials science}, volume = {211}, journal = {Physica status solidi A : Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330464}, pages = {1410 -- 1415}, year = {2014}, abstract = {The metabolic activity of Chinese hamster ovary (CHO) cells was observed using a light-addressable potentiometric sensor (LAPS). The dependency toward different glucose concentrations (17-200 mM) follows a Michaelis-Menten kinetics trajectory with Kₘ = 32.8 mM, and the obtained Kₘ value in this experiment was compared with that found in literature. In addition, the pH shift induced by glucose metabolism of tumor cells transfected with the HPV-16 genome (C3 cells) was successfully observed. These results indicate the possibility to determine the tumor cells metabolism with a LAPS-based measurement device.}, language = {en} } @article{TakenagaSchneiderErbayetal.2015, author = {Takenaga, Shoko and Schneider, Benno and Erbay, E. and Biselli, Manfred and Schnitzler, Thomas and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201532053}, pages = {1347 -- 1352}, year = {2015}, abstract = {A new microfluidic assembly method for semiconductor-based biosensors using 3D-printing technologies was proposed for a rapid and cost-efficient design of new sensor systems. The microfluidic unit is designed and printed by a 3D-printer in just a few hours and assembled on a light-addressable potentiometric sensor (LAPS) chip using a photo resin. The cell growth curves obtained from culturing cells within microfluidics-based LAPS systems were compared with cell growth curves in cell culture flasks to examine biocompatibility of the 3D-printed chips. Furthermore, an optimal cell culturing within microfluidics-based LAPS chips was achieved by adjusting the fetal calf serum concentrations of the cell culture medium, an important factor for the cell proliferation.}, language = {en} }