@article{BouwmanGuldenHeijdenetal.2013, author = {Bouwman, Peter and Gulden, Hanneke van der and Heijden, Ingrid van der and Drost, Rinske and Klijn, Christiaan N. and Prasetyanti, Pramudita and Pieterse, Mark and Wientjens, Ellen and Seibler, Jost and Hogervorst, Frank B. L. and Jonkers, Jos}, title = {A High-Throughput Functional Complementation Assay for Classification of BRCA1 Missense Variants}, series = {Cancer Discovery}, journal = {Cancer Discovery}, number = {3}, issn = {2159-8290}, doi = {10.1158/2159-8290.CD-13-0094}, pages = {1142 -- 1152}, year = {2013}, language = {en} } @article{DelleHuckBaeckeretal.2015, author = {Delle, Lotta E. and Huck, Christina and B{\"a}cker, Matthias and M{\"u}ller, Frank and Grandthyll, Samuel and Jacobs, Karin and Lilischkis, Rainer and Vu, Xuan T. and Sch{\"o}ning, Michael Josef and Wagner, Patrick and Thoelen, Roland and Weil, Maryam and Ingebrandt, Sven}, title = {Impedimetric immunosensor for the detection of histamine based on reduced graphene oxide}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431863}, pages = {1327 -- 1334}, year = {2015}, language = {en} } @inproceedings{NeuJanserKhatibietal.2015, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Operational modal analysis of a cantilever in a wind tunnel using optical fiber bragg grating sensors}, series = {6th International Operational Modal Analysis Conference. IOMACĀ“15. 2015 May 12-14 Gijon - Spain}, booktitle = {6th International Operational Modal Analysis Conference. IOMACĀ“15. 2015 May 12-14 Gijon - Spain}, doi = {10.13140/RG.2.1.3753.0324}, pages = {10 S.}, year = {2015}, language = {en} } @article{BindalSharmaJanseretal.2013, author = {Bindal, Gaurav and Sharma, Sparsh and Janser, Frank and Neu, Eugen}, title = {Detailed analysis of variables affecting wing kinematics of bat flight}, series = {SAE International Journal of Aerospace}, volume = {6}, journal = {SAE International Journal of Aerospace}, number = {2}, issn = {1946-3901}, doi = {10.4271/2013-01-9003}, pages = {811 -- 818}, year = {2013}, language = {en} } @inproceedings{NakagawaMichauxKallweitetal.2015, author = {Nakagawa, Masaki and Michaux, Frank and Kallweit, Stephan and Maeda, Kazuhiro}, title = {Unsteady flow measurements in the wake behind a wind-tunnel car model by using high-speed planar PIV}, series = {11TH International Symposium on Particle Image Velocimetry - PIV15 Santa Barbara, California, September 14-16, 2015}, booktitle = {11TH International Symposium on Particle Image Velocimetry - PIV15 Santa Barbara, California, September 14-16, 2015}, pages = {21 S.}, year = {2015}, abstract = {This study investigates unsteady characteristics of the wake behind a 28\%-scale car model in a wind tunnel using highspeed planar particle image velocimetry (PIV). The car model is based on a hatchback passenger car that is known to have relatively high fluctuations in its aerodynamic loads. This study primarily focuses on the lateral motion of the flow on the horizontal plane to determine the effect of the flow motion on the straight-line stability and the initial steering response of the actual car on a track. This paper first compares the flow fields in the wake behind the above mentioned model obtained using conventional and high-speed planar PIV, with sampling frequencies of 8 Hz and 1 kHz, respectively. Large asymmetrically coherent flow structures, which fluctuate at frequencies below 2 Hz, are observed in the results of highspeed PIV measurements, whereas conventional PIV is unable to capture these features of the flow owing to aliasing. This flow pattern with a laterally swaying motion is represented by opposite signs of cross-correlation coefficients of streamwise velocity fluctuations for the two sides of the car model. Effects of two aerodynamic devices that are known to reduce the fluctuation levels of the aerodynamic loads are then extensively investigated. The correlation analyses reveal that these devices indeed reduce the fluctuation levels of the flow and the correlation values around the rear combination-lamp, but it is found that the effects of these devices are different around the c-pillar.}, language = {en} } @inproceedings{ChudobaButenwegPfeiffer2003, author = {Chudoba, Rostislav and Butenweg, Christoph and Pfeiffer, Frank}, title = {Textile reinforced concrete. Part I: Process model for collaborative research and development}, series = {Digital proceedings / IKM 2003, proceedings 16th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering [Elektronische Ressource : 10. - 12. Juni 2003, Weimar] / Bauhaus-Universit{\"a}t Weimar. Ed.: K. G{\"u}rlebeck; L. Hempel; C. K{\"o}nke}, booktitle = {Digital proceedings / IKM 2003, proceedings 16th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering [Elektronische Ressource : 10. - 12. Juni 2003, Weimar] / Bauhaus-Universit{\"a}t Weimar. Ed.: K. G{\"u}rlebeck; L. Hempel; C. K{\"o}nke}, publisher = {IKM}, address = {Weimar}, organization = {Internationales Kolloquium {\"u}ber Anwendungen der Informatik und Mathematik in Architektur und Bauwesen <16, 2003, Weimar>}, pages = {1 -- 8}, year = {2003}, language = {en} } @article{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Braun, Carsten and Orifici, Adrian C.}, title = {Operational Modal Analysis of a wing excited by transonic flow}, series = {Aerospace Science and Technology}, volume = {49}, journal = {Aerospace Science and Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1270-9638}, doi = {10.1016/j.ast.2015.11.032}, pages = {73 -- 79}, year = {2016}, abstract = {Operational Modal Analysis (OMA) is a promising candidate for flutter testing and Structural Health Monitoring (SHM) of aircraft wings that are passively excited by wind loads. However, no studies have been published where OMA is tested in transonic flows, which is the dominant condition for large civil aircraft and is characterized by complex and unique aerodynamic phenomena. We use data from the HIRENASD large-scale wind tunnel experiment to automatically extract modal parameters from an ambiently excited wing operated in the transonic regime using two OMA methods: Stochastic Subspace Identification (SSI) and Frequency Domain Decomposition (FDD). The system response is evaluated based on accelerometer measurements. The excitation is investigated from surface pressure measurements. The forcing function is shown to be non-white, non-stationary and contaminated by narrow-banded transonic disturbances. All these properties violate fundamental OMA assumptions about the forcing function. Despite this, all physical modes in the investigated frequency range were successfully identified, and in addition transonic pressure waves were identified as physical modes as well. The SSI method showed superior identification capabilities for the investigated case. The investigation shows that complex transonic flows can interfere with OMA. This can make existing approaches for modal tracking unsuitable for their application to aircraft wings operated in the transonic flight regime. Approaches to separate the true physical modes from the transonic disturbances are discussed.}, language = {en} } @inproceedings{NakagawaKallweitMichauxetal.2016, author = {Nakagawa, Masaki and Kallweit, Stephan and Michaux, Frank and Hojo, Teppei}, title = {Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry}, series = {SAE International Journal of Passenger Cars - Mechanical Systems}, booktitle = {SAE International Journal of Passenger Cars - Mechanical Systems}, issn = {1946-4002}, doi = {10.4271/2016-01-1611}, pages = {18 S.}, year = {2016}, language = {en} } @article{NeuJanserKhatibietal.2017, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Fully Automated Operational Modal Analysis using multi-stage clustering}, series = {Mechanical Systems and Signal Processing}, volume = {Vol. 84, Part A}, journal = {Mechanical Systems and Signal Processing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0888-3270}, doi = {10.1016/j.ymssp.2016.07.031}, pages = {308 -- 323}, year = {2017}, language = {en} } @article{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Automated modal parameter-based anomaly detection under varying wind excitation}, series = {Structural Health Monitoring}, volume = {15}, journal = {Structural Health Monitoring}, number = {6}, publisher = {Sage}, address = {London}, issn = {1475-9217}, doi = {10.1177/1475921716665803}, pages = {1 -- 20}, year = {2016}, abstract = {Wind-induced operational variability is one of the major challenges for structural health monitoring of slender engineering structures like aircraft wings or wind turbine blades. Damage sensitive features often show an even bigger sensitivity to operational variability. In this study a composite cantilever was subjected to multiple mass configurations, velocities and angles of attack in a controlled wind tunnel environment. A small-scale impact damage was introduced to the specimen and the structural response measurements were repeated. The proposed damage detection methodology is based on automated operational modal analysis. A novel baseline preparation procedure is described that reduces the amount of user interaction to the provision of a single consistency threshold. The procedure starts with an indeterminate number of operational modal analysis identifications from a large number of datasets and returns a complete baseline matrix of natural frequencies and damping ratios that is suitable for subsequent anomaly detection. Mahalanobis distance-based anomaly detection is then applied to successfully detect the damage under varying severities of operational variability and with various degrees of knowledge about the present operational conditions. The damage detection capabilities of the proposed methodology were found to be excellent under varying velocities and angles of attack. Damage detection was less successful under joint mass and wind variability but could be significantly improved through the provision of the currently encountered operational conditions.}, language = {en} }