@article{FerreinMaraisPotgieteretal.2011, author = {Ferrein, Alexander and Marais, Stephen and Potgieter, Anet and Steinbauer, Gerald}, title = {RoboCup Junior: A vehicle for S\&T education in Africa?}, publisher = {IEEE}, address = {New York}, isbn = {978-1-61284-992-8}, pages = {1 -- 6}, year = {2011}, language = {en} } @article{FerreinSteinbauer2016, author = {Ferrein, Alexander and Steinbauer, Gerald}, title = {20 Years of RoboCup - A Subjective Retrospection}, series = {KI - K{\"u}nstliche Intelligenz}, volume = {30}, journal = {KI - K{\"u}nstliche Intelligenz}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {1610-1987}, doi = {10.1007/s13218-016-0449-5}, pages = {225 -- 232}, year = {2016}, abstract = {This summer, RoboCup competitions were held for the 20th time in Leipzig, Germany. It was the second time that RoboCup took place in Germany, 10 years after the 2006 RoboCup in Bremen. In this article, we give an overview on the latest developments of RoboCup and what happened in the different leagues over the last decade. With its 20th edition, RoboCup clearly is a success story and a role model for robotics competitions. From our personal view point, we acknowledge this by giving a retrospection about what makes RoboCup such a success.}, language = {en} } @article{FerreinSteinbauerMcPhillipsetal.2009, author = {Ferrein, Alexander and Steinbauer, Gerald and McPhillips, Graeme and Niem{\"u}ller, Tim and Potgieter, Anet}, title = {Team Zadeat 2009 : team report}, volume = {6}, pages = {1}, year = {2009}, language = {en} } @article{LeingartnerMaurerFerreinetal.2016, author = {Leingartner, Max and Maurer, Johannes and Ferrein, Alexander and Steinbauer, Gerald}, title = {Evaluation of Sensors and Mapping Approaches for Disasters in Tunnels}, series = {Journal of Field Robotics}, volume = {33}, journal = {Journal of Field Robotics}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1556-4967}, doi = {10.1002/rob.21611}, pages = {1037 -- 1057}, year = {2016}, abstract = {Ground or aerial robots equipped with advanced sensing technologies, such as three-dimensional laser scanners and advanced mapping algorithms, are deemed useful as a supporting technology for first responders. A great deal of excellent research in the field exists, but practical applications at real disaster sites are scarce. Many projects concentrate on equipping robots with advanced capabilities, such as autonomous exploration or object manipulation. In spite of this, realistic application areas for such robots are limited to teleoperated reconnaissance or search. In this paper, we investigate how well state-of-the-art and off-the-shelf components and algorithms are suited for reconnaissance in current disaster-relief scenarios. The basic idea is to make use of some of the most common sensors and deploy some widely used algorithms in a disaster situation, and to evaluate how well the components work for these scenarios. We acquired the sensor data from two field experiments, one from a disaster-relief operation in a motorway tunnel, and one from a mapping experiment in a partly closed down motorway tunnel. Based on these data, which we make publicly available, we evaluate state-of-the-art and off-the-shelf mapping approaches. In our analysis, we integrate opinions and replies from first responders as well as from some algorithm developers on the usefulness of the data and the limitations of the deployed approaches, respectively. We discuss the lessons we learned during the two missions. These lessons are interesting for the community working in similar areas of urban search and rescue, particularly reconnaissance and search.}, language = {en} } @article{RensVarzinczakMeyeretal.2010, author = {Rens, Gavin and Varzinczak, Ivan and Meyer, Thomas and Ferrein, Alexander}, title = {A Logic for Reasoning about Actions and Explicit Observations}, series = {AI 2010: Advances in Artificial Intelligence 23rd Australasian Joint Conference, Adelaide, Australia, December 7-10, 2010. Proceedings}, journal = {AI 2010: Advances in Artificial Intelligence 23rd Australasian Joint Conference, Adelaide, Australia, December 7-10, 2010. Proceedings}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-17431-5}, pages = {395 -- 404}, year = {2010}, language = {en} } @article{FerreinNiemuellerSteinbauer2010, author = {Ferrein, Alexander and Niem{\"u}ller, Tim and Steinbauer, Gerald}, title = {Team Zadeat 2010 : application for participation}, pages = {5 Seiten}, year = {2010}, language = {en} } @article{Ferrein2004, author = {Ferrein, Alexander}, title = {Autonome Entscheidungsfindung bei Robotern : Planwirtschaft}, series = {Linux-Magazin}, journal = {Linux-Magazin}, number = {7}, issn = {1432-640X (Print)}, pages = {50 -- 53}, year = {2004}, language = {de} } @article{FerreinDyllaLakemeyer2003, author = {Ferrein, Alexander and Dylla, Frank and Lakemeyer, Gerhard}, title = {Specifying Multirobot Coordination in ICPGolog - From Simulation towards Real Robots / Dylla, Frank ; Ferrein, Alexander ; Lakemeyer, Gerhard}, pages = {1 -- 10}, year = {2003}, language = {en} } @article{FerreinSteinbauerVassos2012, author = {Ferrein, Alexander and Steinbauer, Gerald and Vassos, Stavros}, title = {Action-Based Imperative Programming with YAGI}, pages = {24 -- 31}, year = {2012}, abstract = {Many tasks for autonomous agents or robots are best described by a specification of the environment and a specification of the available actions the agent or robot can perform. Combining such a specification with the possibility to imperatively program a robot or agent is what we call the actionbased imperative programming. One of the most successful such approaches is Golog. In this paper, we draft a proposal for a new robot programming language YAGI, which is based on the action-based imperative programming paradigm. Our goal is to design a small, portable stand-alone YAGI interpreter. We combine the benefits of a principled domain specification with a clean, small and simple programming language, which does not exploit any side-effects from the implementation language. We discuss general requirements of action-based programming languages and outline YAGI, our action-based language approach which particularly aims at embeddability.}, language = {en} } @article{FerreinLakemeyer2005, author = {Ferrein, Alexander and Lakemeyer, Gerhard}, title = {Wie Roboter die Welt sehen : Roboterfußball im Dienst der Wissenschaft / Ferrein, Alexander ; Lakemeyer, Gerhard}, series = {Bild und Erkenntnis : Formen und Funktionen des Bildes in Wissenschaft und Technik / RWTH. Andreas Beyer ; Markus Lohoff (Hrsg.)}, journal = {Bild und Erkenntnis : Formen und Funktionen des Bildes in Wissenschaft und Technik / RWTH. Andreas Beyer ; Markus Lohoff (Hrsg.)}, publisher = {Deutscher Kunstverlag}, address = {M{\"u}nchen}, isbn = {3-422-06463-X}, pages = {360 -- 361}, year = {2005}, language = {de} } @article{FerreinHermannsLakemeyer2006, author = {Ferrein, Alexander and Hermanns, Lutz and Lakemeyer, Gerhard}, title = {Comparing Sensor Fusion Techniques for Ball Position Estimation / Ferrein, Alexander ; Hermanns, Lutz ; Lakemeyer, Gerhard}, series = {RoboCup 2005: Robot Soccer World Cup IX}, journal = {RoboCup 2005: Robot Soccer World Cup IX}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-35437-6}, pages = {154 -- 165}, year = {2006}, language = {en} } @article{FerreinSchifferLakemeyer2006, author = {Ferrein, Alexander and Schiffer, Stefan and Lakemeyer, Gerhard}, title = {Football is coming Home / Schiffer, Stefan ; Ferrein, Alexander ; Lakemeyer, Gerhard}, series = {PCAR '06 Proceedings of the 2006 international symposium on Practical cognitive agents and robots}, journal = {PCAR '06 Proceedings of the 2006 international symposium on Practical cognitive agents and robots}, publisher = {ACM}, address = {New York, NY}, isbn = {1-74052-130-7}, pages = {39 -- 50}, year = {2006}, language = {en} } @article{FerreinLakemeyer2006, author = {Ferrein, Alexander and Lakemeyer, Gerhard}, title = {Roboterfußball - Wissenschaft, die auch Spass macht / Ferrein, Alexander ; Lakemeyer, Gerhard}, series = {RWTH Themen (2006)}, journal = {RWTH Themen (2006)}, isbn = {0179-079X}, pages = {36 -- 39}, year = {2006}, language = {de} } @article{FerreinMiesLakemeyer2008, author = {Ferrein, Alexander and Mies, Christoph and Lakemeyer, Gerhard}, title = {Repairing Decision-Theoretic Policies Using Goal-Oriented Planning / Mies, Christoph ; Ferrein, Alexander ; Lakemeyer, Gerhard}, series = {KI 2008: Advances in Artificial Intelligence : 31st Annual German Conference on AI, KI 2008, Kaiserslautern, Germany, September 23-26, 2008. Proceedings}, journal = {KI 2008: Advances in Artificial Intelligence : 31st Annual German Conference on AI, KI 2008, Kaiserslautern, Germany, September 23-26, 2008. Proceedings}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-85844-7}, pages = {267 -- 275}, year = {2008}, language = {en} } @article{FerreinRensPoel2009, author = {Ferrein, Alexander and Rens, Gavin and Poel, Etienne van der}, title = {A BDI agent architecture for a POMDP planner / Rens, Gavin ; Ferrein, Alexander ; Poel, Etienne van der}, pages = {1 -- 6}, year = {2009}, language = {en} } @article{LimpertWiesenFerreinetal.2019, author = {Limpert, Nicolas and Wiesen, Patrick and Ferrein, Alexander and Kallweit, Stephan and Schiffer, Stefan}, title = {The ROSIN Project and its Outreach to South Africa}, series = {R\&D Journal}, volume = {35}, journal = {R\&D Journal}, pages = {1 -- 6}, year = {2019}, language = {en} } @article{FerreinSchifferBooysenetal.2016, author = {Ferrein, Alexander and Schiffer, Stefan and Booysen, T. and Stopforth, R.}, title = {Why it is harder to run RoboCup in South Africa: Experiences from German South African collaborations}, series = {International Journal of Advanced Robotic Systems}, volume = {13}, journal = {International Journal of Advanced Robotic Systems}, number = {5}, issn = {1729-8806}, doi = {10.1177/1729881416662789}, pages = {1 -- 13}, year = {2016}, abstract = {Robots are widely used as a vehicle to spark interest in science and technology in learners. A number of initiatives focus on this issue, for instance, the Roberta Initiative, the FIRST Lego League, the World Robot Olympiad and RoboCup Junior. Robotic competitions are valuable not only for school learners but also for university students, as the RoboCup initiative shows. Besides technical skills, the students get some project exposure and experience what it means to finish their tasks on time. But qualifying students for future high-tech areas should not only be for students from developed countries. In this article, we present our experiences with research and education in robotics within the RoboCup initiative, in Germany and South Africa; we report on our experiences with trying to get the RoboCup initiative in South Africa going. RoboCup has a huge support base of academic institutions in Germany; this is not the case in South Africa. We present our 'north-south' collaboration initiatives in RoboCup between Germany and South Africa and discuss some of the reasons why we think it is harder to run RoboCup in South Africa.}, language = {en} } @article{AlhwarinFerreinScholl2014, author = {Alhwarin, Faraj and Ferrein, Alexander and Scholl, Ingrid}, title = {IR stereo kinect: improving depth images by combining structured light with IR stereo}, pages = {1 -- 9}, year = {2014}, language = {en} } @article{SchulteTiggesFoersterNikolovskietal.2022, author = {Schulte-Tigges, Joschua and F{\"o}rster, Marco and Nikolovski, Gjorgji and Reke, Michael and Ferrein, Alexander and Kaszner, Daniel and Matheis, Dominik and Walter, Thomas}, title = {Benchmarking of various LiDAR sensors for use in self-driving vehicles in real-world environments}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22197146}, pages = {20 Seiten}, year = {2022}, abstract = {Abstract In this paper, we report on our benchmark results of the LiDAR sensors Livox Horizon, Robosense M1, Blickfeld Cube, Blickfeld Cube Range, Velodyne Velarray H800, and Innoviz Pro. The idea was to test the sensors in different typical scenarios that were defined with real-world use cases in mind, in order to find a sensor that meet the requirements of self-driving vehicles. For this, we defined static and dynamic benchmark scenarios. In the static scenarios, both LiDAR and the detection target do not move during the measurement. In dynamic scenarios, the LiDAR sensor was mounted on the vehicle which was driving toward the detection target. We tested all mentioned LiDAR sensors in both scenarios, show the results regarding the detection accuracy of the targets, and discuss their usefulness for deployment in self-driving cars.}, language = {en} } @article{FerreinCalmesLakemeyeretal.2006, author = {Ferrein, Alexander and Calmes, Laurent and Lakemeyer, Gerhard and Wagner, Hermann}, title = {Von Schleiereulen und fussballspielenden Robotern / Calmes, Laurent ; Ferrein, Alexander ; Lakemeyer, Gerhard ; Wagner, Hermann}, series = {RWTH Themen (2006)}, journal = {RWTH Themen (2006)}, isbn = {0179-079X}, pages = {30 -- 33}, year = {2006}, language = {de} }