@article{KernSchelthoffMathieu2010, author = {Kern, Alexander and Schelthoff, Christof and Mathieu, Moritz}, title = {Probability of lightning strikes to air-terminations of structures using the electro-geometrical model theory and the statistics of lightning current parameters}, pages = {750-1 -- 750-8}, year = {2010}, language = {en} } @article{KernSchelthoffMathieu2011, author = {Kern, Alexander and Schelthoff, Christof and Mathieu, Moritz}, title = {Detaillierte Berechnung der Einfangwirksamkeiten von Fangeinrichtungen mit einem dynamischen elektro-geometrischen Modell - Detailed calculation of the interception efficiencies for airtermination systems using a dynamic electro-geometrical model}, pages = {1 -- 5}, year = {2011}, language = {de} } @article{KernSchelthoffMathieu2011, author = {Kern, Alexander and Schelthoff, Christof and Mathieu, Moritz}, title = {Calculation of interception efficiencies for airterminations using a dynamic electro-geometrical model}, publisher = {IEEE}, address = {New York}, pages = {1 -- 6}, year = {2011}, language = {en} } @article{LandersKern2011, author = {Landers, Ernst Ulrich and Kern, Alexander}, title = {Future evolution of risk management for structures : Advancement for the future IEC 62305-2 Ed3}, publisher = {IEEE}, address = {New York}, pages = {1 -- 6}, year = {2011}, language = {en} } @article{KernSchelthoffMathieu2011, author = {Kern, Alexander and Schelthoff, Christof and Mathieu, Moritz}, title = {Probability of lightning strikes to air-terminations of structures using the electro-geometrical model theory and the statistics of lightning current parameters}, series = {Atmospheric Research. 104 (2011)}, journal = {Atmospheric Research. 104 (2011)}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0169-8095}, year = {2011}, language = {en} } @article{KernScheibe2011, author = {Kern, Alexander and Scheibe, Klaus}, title = {Die neuen internationalen Blitzschutz-Standards der Reihe IEC 62305:2010 : {\"U}berblick und Stand der Umsetzung in die nationale Normenreihe DIN EN 62305}, series = {9. VDE/ABB-Blitzschutztagung : Vortr{\"a}ge der 9. VDE/ABB-Fachtagung vom 27. bis 28. Oktober 2011 in Neu-Ulm / Veranst.: Ausschuss f{\"u}r Blitzschutz und Blitzforschung (ABB) im VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V. Wiss. Tagungsleitung: K. Stimper}, journal = {9. VDE/ABB-Blitzschutztagung : Vortr{\"a}ge der 9. VDE/ABB-Fachtagung vom 27. bis 28. Oktober 2011 in Neu-Ulm / Veranst.: Ausschuss f{\"u}r Blitzschutz und Blitzforschung (ABB) im VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V. Wiss. Tagungsleitung: K. Stimper}, publisher = {VDE-Verl.}, address = {Berlin}, isbn = {978-3-8007-3380-4}, pages = {7 -- 12}, year = {2011}, language = {de} } @article{KernSchelthoffMathieu2012, author = {Kern, Alexander and Schelthoff, Christof and Mathieu, Moritz}, title = {Detaillierte Berechnung der Einfangwirksamkeiten von Fangeinrichtungen}, series = {Elektro-Praktiker}, volume = {66}, journal = {Elektro-Praktiker}, number = {4}, publisher = {Huss Medien}, address = {Berlin}, issn = {0013-5569}, pages = {6 Seiten}, year = {2012}, abstract = {Im Beitrag wird zun{\"a}chst das Verfahren eines dynamischen elektro-geometrischen Modells vorgestellt. Dieses arbeitet im Gegensatz zum klassischen Blitzkugel-Verfahren nicht mit konstanten Radien; vielmehr wird der Radius der Blitzkugel variiert. Dabei werden ausschließlich vorhandene und in internationalen Normen anerkannte Ergebnisse, blitzphysikalische Grundlagen und Untersuchungen verwendet, und auf deren Grundlage ein numerisches Verfahren erarbeitet. Mit dem dynamischen elektro-geometrischen Modell werden dann einige Beispiele des Schutzes mit Fangstangen, die gem{\"a}ß dem klassischen Blitzkugel-Verfahren nach DIN EN 62305-3 f{\"u}r die Schutzklassen I - II - III - IV geplant sind, untersucht. Es wird gezeigt, dass die Einfangwirksamkeiten wesentlich h{\"o}her sind als in der Normenreihe DIN EN 62305 selbst angegeben. Grund daf{\"u}r ist die Tatsache, dass das Blitzkugel-Verfahren sehr konservativ aufgebaut ist und dem Planer von Blitzschutzsystemen nur die m{\"o}glichen Stellen f{\"u}r einen Einschlag aufzeigt, ohne eine Bewertung der Einschlagsh{\"a}ufigkeit zu liefern. Andererseits bedeutet dies jedoch, dass man mit dem klassischen Blitzkugel-Verfahren stets auf der „sicheren Seite" liegt.}, language = {de} } @article{KernBraun2013, author = {Kern, Alexander and Braun, Christian}, title = {Neuerungen bei der Blitzschutznorm. Teil 2}, series = {etz Elektrotechnik und Automation}, volume = {Bd. 134}, journal = {etz Elektrotechnik und Automation}, number = {H. 8}, publisher = {VDE-Verlag}, address = {Wuppertal}, issn = {0170-1711}, pages = {66 -- 69}, year = {2013}, language = {de} } @inproceedings{Kern2013, author = {Kern, Alexander}, title = {Die neue DIN EN 62305-2 (VDE 0185-305-2) Ed.2:2013-02 - {\"A}nderungen zur Ed.l und zugeh{\"o}rige Beibl{\"a}tter}, series = {10. VDE, VBB-Blitzschutztagung : Vortr{\"a}ge der 10. VDE, ABB-Fachtagung vom 24. bis 25. Oktober 2013 in Neu-Ulm. (VDE-Fachbericht ; 70)}, booktitle = {10. VDE, VBB-Blitzschutztagung : Vortr{\"a}ge der 10. VDE, ABB-Fachtagung vom 24. bis 25. Oktober 2013 in Neu-Ulm. (VDE-Fachbericht ; 70)}, publisher = {VDE-Verl.}, address = {Berlin}, organization = {Blitzschutztagung <10, 2013, Neu-Ulm>}, isbn = {978-3-8007-3540-2}, pages = {9 -- 16}, year = {2013}, language = {de} } @inproceedings{ScheibeKern2013, author = {Scheibe, K. and Kern, Alexander}, title = {Stand der Normung f{\"u}r {\"U}berspannungsschutzger{\"a}te}, series = {10. VDE, VBB-Blitzschutztagung : Vortr{\"a}ge der 10. VDE, ABB-Fachtagung vom 24. bis 25. Oktober 2013 in Neu-Ulm. (VDE-Fachbericht ; 70)}, booktitle = {10. VDE, VBB-Blitzschutztagung : Vortr{\"a}ge der 10. VDE, ABB-Fachtagung vom 24. bis 25. Oktober 2013 in Neu-Ulm. (VDE-Fachbericht ; 70)}, publisher = {VDE-Verl.}, address = {Berlin}, organization = {Blitzschutztagung <10, 2013, Neu-Ulm>}, isbn = {978-3-8007-3540-2}, pages = {23 -- 27}, year = {2013}, language = {de} } @inproceedings{WetterKern2014, author = {Wetter, Martin and Kern, Alexander}, title = {Number of lightning strikes to tall structures - comparison of calculations and measurements using a modern lightning monitoring system}, series = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, booktitle = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, organization = {International Conference on Lightning Protection <2014, Shanghai>}, pages = {1 -- 7}, year = {2014}, language = {en} } @inproceedings{KernSchelthoffMathieu2012, author = {Kern, Alexander and Schelthoff, Christof and Mathieu, Moritz}, title = {Calculation of interception efficiencies for mesh-type air-terminations according to IEC 62305-3 using a dynamic electro-geometrical model}, series = {International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna}, booktitle = {International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna}, publisher = {IEEE}, address = {Piscataway, NJ}, organization = {International Conference on Lightning Protection <2012, Wien>}, isbn = {978-1-4673-1896-9 (E-Book) ; 978-1-4673-1898-3 (Print)}, pages = {1 -- 6}, year = {2012}, language = {en} } @book{KernWettingfeld2014, author = {Kern, Alexander and Wettingfeld, J{\"u}rgen}, title = {Blitzschutzsysteme 1 : allgemeine Grunds{\"a}tze, Risikomanagement, Schutz von baulichen Anlagen und Personen ; Erl{\"a}uterungen zu den Normen DIN EN 62305-1 (VDE 0185-305-1):2011-10, DIN EN 62305-2 (VDE 0185-305-2):2013-02, DIN EN 62305-3 (VDE 0185-305-3):2011-10. (VDE-Schriftenreihe Normen verst{\"a}ndlich ; 44)}, publisher = {VDE-Verl.}, address = {Berlin [u.a.]}, isbn = {978-3-8007-3511-2}, pages = {308 S.}, year = {2014}, language = {de} } @book{KernWettingfeld2015, author = {Kern, Alexander and Wettingfeld, J{\"u}rgen}, title = {Blitzschutzsysteme 2 : Schutz f{\"u}r besondere bauliche Anlagen ; Schutz f{\"u}r elektrische und elektronische Systeme in baulichen Anlagen ; Erl{\"a}uterungen zu den Normen DIN EN 62305-3 (VDE 0185-305-3):2011-10, DIN EN 62305-4 (VDE 0185-305-4):2011-10. (VDE-Schriftenreihe Normen verst{\"a}ndlich ; 160)}, publisher = {VDE-Verl.}, address = {Berlin [u.a.]}, isbn = {978-3-8007-3653-9}, pages = {247 S.}, year = {2015}, language = {de} } @inproceedings{LoPiparoKernMazzetti2012, author = {Lo Piparo, G. B. and Kern, Alexander and Mazzetti, C.}, title = {Some masterpoints about risk due to lightning}, series = {International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna}, booktitle = {International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna}, publisher = {IEEE}, address = {Piscataway, NJ}, organization = {International Conference on Lightning Protection <2012, Wien>}, isbn = {978-1-4673-1896-9 (E-Book) ; 978-1-4673-1898-3 (Print)}, pages = {1 -- 6}, year = {2012}, language = {en} } @inproceedings{RousseauKern2014, author = {Rousseau, Alain and Kern, Alexander}, title = {How to deal with environmental risk in IEC 62305-2}, series = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, booktitle = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, organization = {International Conference on Lightning Protection <2014, Shanghai>}, pages = {521 -- 527}, year = {2014}, abstract = {The 2nd edition of the lightning risk management standard (IEC 62305-2) considers structures, which may endanger environment. In these cases, the loss is not limited to the structure itself, which is valid for usual structures. In the past (Edition 1) this danger was simply taken into account by a special hazard factor, multiplying the existing risk for the structure with a number. Now, in the edition 2, we add to the risk for the structure itself a "second risk" due to the losses outside the structure. The losses outside can be treated independently from what occurs inside. This is a major advantage to analyze the risk for sensitive structures, like chemical plants, nuclear plants, or structures containing explosives, etc. In this paper, the existing procedure given by the European version EN 62305-2 Ed.2 is further developed and applied to a few structures.}, language = {en} } @inproceedings{KernBraun2014, author = {Kern, Alexander and Braun, Christian}, title = {Risk management according to IEC 62305-2 edition 2: 2010-12 assessment of structures with a risk of explosion}, series = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, booktitle = {2014 International Conference on Lightning Protection (ICLP), Shanghai, China}, organization = {International Conference on Lightning Protection <2014, Shanghai>}, pages = {1237 -- 1242}, year = {2014}, abstract = {Risk management for structures with a risk of explosion should be considered very carefully when performing a risk analysis according to IEC 62305-2. In contrast to the 2006 edition of the standard, the 2010 edition describes the topic "Structures with a risk of explosion" in more detail. Moreover, in Germany separate procedures and parameters are defined for the risk analysis of structures with a risk of explosion (Supplement 3 of the German DIN EN 62305-2 standard). This paper describes the contents and the relevant calculations of this Supplement 3, together with a numerical example.}, language = {en} } @inproceedings{KernMeppelink2001, author = {Kern, Alexander and Meppelink, Jan}, title = {Neue M{\"o}glichkeiten elektrischer Anschl{\"u}sse an die Bewehrung und Untersuchung der Wirkung von Blitzstr{\"o}men in bewehrtem Beton}, year = {2001}, abstract = {Im Rahmen eines modernen Blitzschutzsystems f{\"u}r Stahlbeton-Bauten bietet es sich an, die Betonbewehrung zu benutzen: - Sie kann die Funktionen der Ableitungseinrichtungen und des Blitzschutz- Potentialausgleichs bei einem klassischen Geb{\"a}ude-Blitzschutz {\"u}bernehmen [1]; - Sie kann, ggf. bei entsprechender Erg{\"a}nzung, als ein geschlossener K{\"a}fig ausgebildet werden und damit eine deutliche Reduzierung der Belastung elektrischer / elektronischer Systeme durch blitzinduzierte elektromagnetische Felder erbringen (LEMP-Schutz [2]). Die Nutzung der Bewehrung ist dabei grunds{\"a}tzlich gleichermaßen bei Neubauten wie auch bei Ert{\"u}chtigungen m{\"o}glich und sinnvoll. So stellt die Nutzung der Bewehrung beispielsweise im Bereich von Großkraftwerken eine wesentliche Ert{\"u}chtigungsmaßnahme f{\"u}r den Blitzschutz elektrischer und elektronischer Einrichtungen dar: - Einerseits wird der Blitzschutz-Potentialausgleich durch den Anschluss metallener Einrichtungen wie Elektronik-Schr{\"a}nke, Kabeltrag-Konstruktionen, Rohrleitungen, etc. an die Bewehrung deutlich verbessert. - Andererseits kann bei gr{\"o}ßeren Geb{\"a}uden die elektromagnetische Schirmwirkung durch die elektrische {\"U}berbr{\"u}ckung von vorhandenen Dehnfugen bei Stahlbetonbauten optimiert werden. Diese Dehnfugen sind teilweise nur unzureichend {\"u}berbr{\"u}ckt, so dass bei Blitzeinschlag in das betreffende oder ein benachbartes Geb{\"a}ude an Kabelstrecken, die {\"u}ber die Dehnfuge hinwegf{\"u}hren, rel. hohe Spannungen induziert werden k{\"o}nnen [2, 3]. Die sich um das gesamte Geb{\"a}ude herumziehende oder zwischen zwei Geb{\"a}uden befindliche Dehnfuge muss deshalb im Abstand von maximal einigen Metern {\"u}berbr{\"u}ckt werden. Im Falle von Blitzschutz-Ert{\"u}chtigungen in vorhandenen Geb{\"a}uden wird bisher an jeder geplanten Anschlussstelle die Bewehrung großfl{\"a}chig (\&\#8709; wenige 10 cm) freigelegt, dort ein elektrischer Anschluss zu dem Bewehrungsstab hergestellt, z.B. mittels eines Erdungsfestpunkts, und dann die Betonoberfl{\"a}che wieder geschlossen. Je nach prognostizierter Strombelastung wird teilweise versucht, den {\"u}ber den Anschluss fließenden Strom bereits auf mehrere Bewehrungsst{\"a}be zu verteilen. Dazu sind entweder die kreuzenden St{\"a}be zu verschweißen oder es sind direkt Anschl{\"u}sse an zwei Bewehrungsst{\"a}be herzustellen. All dieses bedeutet einen hohen Aufwand bei der Freilegung der Bewehrung und auch wieder bei der Schließung der entstandenen Betonl{\"o}cher. Es soll deshalb hier untersucht werden, ob es beispielsweise zum Zwecke des Blitzschutz-Potentialausgleichs und auch zur {\"U}berbr{\"u}ckung von Dehnfugen ausreichend ist, den Anschluss an die Bewehrung nach einfachen Verfahren nur jeweils an einen Bewehrungsstab herzustellen. Damit w{\"u}rde der finanzielle und administrative Aufwand an Betonarbeiten deutlich reduziert. Die hier dargestellten Verfahren sind dabei insbesondere f{\"u}r den Einsatz bei Blitzschutz-Ert{\"u}chtigungen in bestehenden Geb{\"a}uden vorgesehen. Abschließend sollen deshalb die M{\"o}glichkeiten zur Pr{\"u}fung korrekter Anschl{\"u}sse, die Grenzen der Verfahren sowie auch die Grenzen der Anwendbarkeit bei Neuanlagen diskutiert werden.}, language = {de} } @inproceedings{KernNeskakisMueller2001, author = {Kern, Alexander and Neskakis, Apostolos and M{\"u}ller, Klaus-Peter}, title = {Blitzschutzkonzept f{\"u}r eine netz-autarke Hybridanlage am Beispiel der Anlage VATALI auf Kreta}, year = {2001}, abstract = {Netz-autarke Anlagen bestehen {\"u}blicherweise aus einer oder mehreren Photovoltaik- (PV-) Anlagen, ggf. auch Solarthermie- (ST-) Anlagen und einem oder mehreren kleineren Windgeneratoren (sie werden deshalb auch als Hybridanlagen bezeichnet) und werden vor allem in Gegenden mit sehr schlechter {\"o}ffentlicher Energieversorgung eingesetzt, d.h. insbesondere in rel. d{\"u}nn bewohnten Gebieten und in Entwicklungsl{\"a}ndern. Der Blitzschutz von netz-autarken Hybridanlagen ist ein bislang noch vergleichsweise unzureichend bearbeitetes Fachgebiet. F{\"u}r große Windenergie-Anlagen (WEA) wurde in den letzten Jahren eine Zahl von FuE-Projekten durchgef{\"u}hrt, zum Großteil finanziert durch die {\"o}ffentliche Hand, zum kleineren Teil auch durch die Industrie, d.h. die WEAHersteller. Dabei wurden bestehende Defizite im Design der WEA festgestellt und Maßnahmen vorgeschlagen, die vor den mechanischen Zerst{\"o}rungen insbesondere des Rotors und vor den St{\"o}rungen und Zerst{\"o}rungen an den elektrischen / elektronischen Systemen der WEA weitgehend Schutz bieten [1, 2, 3]. Der Stand-der- Normung ist im Entwurf DIN VDE 0127 Teil 24 „Blitzschutz f{\"u}r Windenergieanlagen" (dt. {\"U}bersetzung des internationalen Drafts IEC 61400-24 „Wind turbine generator systems; Part 24: Lightning Protection") dokumentiert [4]. Die Maßnahmen sind allerdings insbesondere f{\"u}r gr{\"o}ßere WEA vorgesehen; im Falle kleinerer WEA lassen sie sich nur bedingt umsetzen. Trotzdem sind auch kleinere WEA rel. stark blitzeinschlaggef{\"a}hrdet, wenn sie auf einer Bergkuppe o.{\"a}. platziert werden. F{\"u}r solche kleinere WEA, wie sie bei Hybridanlagen {\"u}blicherweise Verwendung finden, m{\"u}ssen die Blitzschutzmaßnahmen aus der DIN VDE 0127 Teil 24 angepasst werden. F{\"u}r PV- und ST-Anlagen ist eine entsprechende Blitzschutz-Norm noch nicht in Sicht. Hier ist vor allem der Schutz gegen direkte Blitzeinschl{\"a}ge in die Anlage bzw. die Geb{\"a}ude noch nicht ausreichend beachtet. Blitzfangeinrichtungen sind oft nicht vorgesehen. In aller Regel hat man dabei bisher eine Ausf{\"u}hrungsform des Blitzschutzes realisiert, die prim{\"a}r einen Ferneinschlag ber{\"u}cksichtigt und die dabei entstehenden induzierten, rel. energieschwachen {\"U}berspannungen durch schw{\"a}chere Schutzelemente wie R{\"u}ckstromdioden, Bypassdioden und zum Teil thermisch {\"u}berwachte Varistoren begrenzt [5, 6, 7]. Diese Schutzelemente k{\"o}nnen allerdings bei Naheinschl{\"a}gen bzw. Direkteinschl{\"a}gen {\"u}berlastet und damit zerst{\"o}rt werden. Dar{\"u}ber hinaus k{\"o}nnen Nahoder Direkteinschl{\"a}ge auch zur Schw{\"a}chung der elektrischen Festigkeit der PVModulisolierung f{\"u}hren. Die Folge davon sind lokale extreme W{\"a}rmeentwicklungen, die sogar ein Schmelzen von Glas (sekund{\"a}rer Langzeiteffekt) hervorrufen k{\"o}nnten. Bei einem Blitzeinschlag in die netz-autarke Hybridanlage VATALI auf Kreta im Jahre 2000 wurden sowohl einige mechanische wie auch elektrische Komponenten der Anlage zerst{\"o}rt bzw. zum Teil schwer besch{\"a}digt. Die Anlage VATALI besaß zum Zeitpunkt des Blitzeinschlags keinen wirksamen Blitzschutz. Der Gesamtschaden der Hardware belief sich auf ca. 60.000,- EURO. Die exponierte Stellung der Anlage auf einer Bergspitze stellte und stellt nach wie vor ein enormes Blitzeinschlag-Risiko dar, so dass auch zuk{\"u}nftig mit Blitzeinwirkungen gerechnet werden muss. Die Anlage wurde inspiziert, blitzschutz-technische Erfordernisse definiert und daraus Ert{\"u}chtigungsmaßnahmen abgeleitet, die mit {\"u}berschaubarem Aufwand realisierbar sind.}, language = {de} } @inproceedings{KernKrichelMueller2001, author = {Kern, Alexander and Krichel, Frank and M{\"u}ller, Klaus-Peter}, title = {Lightning protection design of a renewable energy hybrid-system without power mains connection}, year = {2001}, abstract = {In the year 2000 a direct lightning strike to the hybridsystem without power mains connection VATALI on the Greek island Crete results in the destruction and damage of some mechanical and electrical components. The hybrid-system VATALI was not lightning protected at that time. The hardware damage costs are approx. 60,000 €. The exposed site of the hybrid-system on top of a mountain was and still is the reason for a high risk of lightning strikes. Also in the future further lightning strikes have to be taken into consideration. In the paper a fundamental lightning protection design concept for renewable energy hybrid-systems without power mains connection and protection measures against direct strikes and overvoltages are shown in detail. The design concept was realized exemplarily for the hybrid-system VATALI. The hardware costs for the protection measures were about 15,000 €. About 50\% of the costs are due to protection measures against direct strikes, 50\% are due to overvoltage protection. Future extensions, new installations, or modifications have to be included into the lightning protection design concept of the hybrid-system.}, language = {en} }