@article{SchoeningPoghossian2009, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Silicon-based field-effect devices with nanostructured surfaces for bio-/chemical sensing}, series = {Semiconductor micro- and nanoelectronics : Proceedings of the Seventh International Conference , Tsakhcadzor, Armenia July 3-5 2009}, journal = {Semiconductor micro- and nanoelectronics : Proceedings of the Seventh International Conference , Tsakhcadzor, Armenia July 3-5 2009}, pages = {51 -- 53}, year = {2009}, language = {en} } @article{SpelthahnPoghossianSchoening2009, author = {Spelthahn, Heiko and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Self-aligned nanogaps and nanochannels via conventional photolithography and pattern-size reduction technique}, series = {Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI}, journal = {Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI}, isbn = {0013-4686}, pages = {6010 -- 6014}, year = {2009}, language = {en} } @article{BegingLeinhosJablonskietal.2015, author = {Beging, Stefan and Leinhos, Marcel and Jablonski, Melanie and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Studying the spatially resolved immobilisation of enzymes on a capacitive field-effect structure by means of nano-spotting}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431891}, pages = {1353 -- 1358}, year = {2015}, language = {en} } @incollection{SchoeningPoghossian2018, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Enzyme und Biosensorik}, series = {Einf{\"u}hrung in die Enzymtechnologie}, booktitle = {Einf{\"u}hrung in die Enzymtechnologie}, publisher = {Springer Spektrum}, address = {Berlin}, isbn = {978-3-662-57619-9}, doi = {10.1007/978-3-662-57619-9_18}, pages = {323 -- 347}, year = {2018}, abstract = {Enzymbasierte Biosensoren finden seit mehr als f{\"u}nf Jahrzehnten einen prosperierenden Wachstumsmarkt und werden zunehmend auch in biotechnologischen Prozessen eingesetzt. In diesem Kapitel werden, ausgehend vom Sensorbegriff und typischen Kenngr{\"o}ßen f{\"u}r Biosensoren (Abschn. 18.1), elektrochemische Enzym-Biosensoren vorgestellt und deren typischen Einsatzgebiete diskutiert (Abschn. 18.2). Ein Blick {\"u}ber den „Tellerrand" hinaus zeigt alternative Transduktorprinzipien (Abschn. 18.3) und f{\"u}hrt abschließend in aktuelle Forschungstrends ein (Abschn. 18.4).}, language = {de} } @article{BaeckerSchusserPoghossianetal.2013, author = {B{\"a}cker, Matthias and Schusser, Sebastian and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Degradationsverhalten bioabbaubarer Polymere : siliziumbasierte Sensorik zur {\"U}berwachung}, series = {GIT Labor-Fachzeitschrift}, journal = {GIT Labor-Fachzeitschrift}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0016-3538}, pages = {32 -- 33}, year = {2013}, language = {de} } @article{ThustPoghossianSchoeningetal.1999, author = {Thust, M. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Naser, S. and M{\"u}ller-Veggian, Mattea and Kordos, P. and L{\"u}th, H.}, title = {Crosssensitivity of a capacitive penicillin sensor combined with a diffusion barrier}, series = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. Vol 1.}, journal = {Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. Vol 1.}, address = {The Hague, The Netherlands}, isbn = {90-76699-02-X}, pages = {573 -- 576}, year = {1999}, language = {en} } @inproceedings{PoghossianIngebrandtPlatenetal.2006, author = {Poghossian, Arshak and Ingebrandt, S. and Platen, J. and Sch{\"o}ning, Michael Josef}, title = {Field-effect sensors with charged macromolecules - from micro towards nano aspects}, series = {Biochemical Sensing Utilisation of Micro-and Nanotechnologies, Warschau, Nov. 2005 : Lecture Notes of the ICB Seminar / ed.: M. Mascini, W. Torbicz}, booktitle = {Biochemical Sensing Utilisation of Micro-and Nanotechnologies, Warschau, Nov. 2005 : Lecture Notes of the ICB Seminar / ed.: M. Mascini, W. Torbicz}, publisher = {Polish Academy Sciences Press}, address = {Warsaw}, pages = {74 -- 81}, year = {2006}, language = {en} } @article{LeinhosSchusserBaeckeretal.2014, author = {Leinhos, Marcel and Schusser, Sebastian and B{\"a}cker, Matthias and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Micromachined multi-parameter sensor chip for the control of polymer-degradation medium}, series = {Physica Status Solidi (A) : special issue on engineering and functional interfaces}, volume = {211}, journal = {Physica Status Solidi (A) : special issue on engineering and functional interfaces}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330364}, pages = {1346 -- 1351}, year = {2014}, abstract = {It is well known that the degradation environment can strongly influence the biodegradability and kinetics of biodegradation processes of polymers. Therefore, besides the monitoring of the degradation process, it is also necessary to control the medium in which the degradation takes place. In this work, a micromachined multi-parameter sensor chip for the control of the polymer-degradation medium has been developed. The chip combines a capacitive field-effect pH sensor, a four-electrode electrolyte-conductivity sensor and a thin-film Pt-temperature sensor. The results of characterization of individual sensors are presented. In addition, the multi-parameter sensor chip together with an impedimetric polymer-degradation sensor was simultaneously characterized in degradation solutions with different pH and electrolyte conductivity. The obtained results demonstrate the feasibility of the multi-parameter sensor chip for the control of the polymer-degradation medium.}, language = {en} } @article{PoghossianAbouzarAmbergeretal.2007, author = {Poghossian, Arshak and Abouzar, Maryam H. and Amberger, F. and Mayer, D. and Han, Y. and Ingebrandt, S. and Offenh{\"a}usser, A. and Sch{\"o}ning, Michael Josef}, title = {Field-effect sensors with charged macromolecules: Characterisation by capacitance-voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods}, series = {Biosensors and Bioelectronics. 22 (2007), H. 9-10}, journal = {Biosensors and Bioelectronics. 22 (2007), H. 9-10}, isbn = {0956-5663}, pages = {2100 -- 2107}, year = {2007}, language = {en} } @article{SchusserMenzelBaeckeretal.2013, author = {Schusser, Sebastian and Menzel, S. and B{\"a}cker, Matthias and Leinhos, Marcel and Poghossian, Arshak and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Degradation of thin poly(lactic acid) films: characterization by capacitance-voltage, atomic force microscopy, scanning electron microscopy and contact-angle measurements}, series = {Electrochimica Acta}, volume = {Vol. 113}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3859 (E-Journal); 0013-4686 (Print)}, pages = {779 -- 784}, year = {2013}, language = {en} } @article{BaeckerKramerHucketal.2014, author = {B{\"a}cker, Matthias and Kramer, F. and Huck, Christina and Poghossian, Arshak and Bratov, A. and Abramova, N. and Sch{\"o}ning, Michael Josef}, title = {Planar and 3D interdigitated electrodes for biosensing applications: The impact of a dielectric barrier on the sensor properties}, series = {Physica Status Solidi (A) - Applications and Materials Science}, volume = {211}, journal = {Physica Status Solidi (A) - Applications and Materials Science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330416}, pages = {1357 -- 1363}, year = {2014}, abstract = {Planar and three-dimensional (3D) interdigitated electrodes (IDE) with electrode digits separated by an insulating barrier of different heights were electrochemically characterized and compared in terms of their sensing properties. Due to the impact of the surface resistance, both types of IDE structures display a non-linear behavior in low-ionic strength solutions. The experimental data were fitted to an electrical equivalent circuit and interpreted taking into account the surface-charge-governed properties. The effect of a charged polyelectrolyte layer electrostatically assembled onto the sensor surface on the surface resistance in solutions with different KCl concentration is studied. In case of the same electrode footprint, 3D-IDEs show a larger cell constant and a higher sensitivity to molecular adsorption than that of planar IDEs. The obtained results demonstrate the potential of 3D-IDEs as a new transducer structure for a direct label-free sensing of charged molecules.}, language = {en} } @article{PoghossianWeilBaeckeretal.2012, author = {Poghossian, Arshak and Weil, M. H. and B{\"a}cker, Matthias and Mayer, D. and Sch{\"o}ning, Michael Josef}, title = {Field-effect Devices Functionalised with Gold-Nanoparticle/Macromolecule Hybrids: New Opportunities for a Label-Free Biosensing}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.136}, pages = {273 -- 276}, year = {2012}, abstract = {Field-effect capacitive electrolyte-insulator-semiconductor (EIS) sensors functionalised with citrate-capped gold nanoparticles (AuNP) have been used for the electrostatic detection of macromolecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in the AuNP/macromolecule hybrids induced by the adsorption or binding events. A feasibility of the proposed detection scheme has been exemplary demonstrated by realising EIS sensors for the detection of poly-D-lysine molecules.}, language = {en} } @article{MoseleyHalamekKrameretal.2014, author = {Moseley, Fiona and Halamek, Jan and Kramer, Friederike and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {An enzyme-based reversible CNOT logic gate realized in a flow system}, series = {Analyst}, volume = {139}, journal = {Analyst}, number = {8}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-5528 (E-Journal) ; 0003-2654 (Print)}, doi = {10.1039/C4AN00133H}, pages = {1839 -- 1842}, year = {2014}, abstract = {An enzyme system organized in a flow device was used to mimic a reversible Controlled NOT (CNOT) gate with two input and two output signals. Reversible conversion of NAD⁺ and NADH cofactors was used to perform a XOR logic operation, while biocatalytic hydrolysis of p-nitrophenyl phosphate resulted in an Identity operation working in parallel. The first biomolecular realization of a CNOT gate is promising for integration into complex biomolecular networks and future biosensor/biomedical applications.}, language = {en} } @article{AbouzarWernerSchoeningetal.2011, author = {Abouzar, Maryam H. and Werner, Moritz and Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Capacitance-voltage and impedance-spectroscopy characteristics of nanoplate EISOI capacitors}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley-VCH}, address = {Berlin}, isbn = {1862-6319}, pages = {1327 -- 1332}, year = {2011}, language = {en} } @incollection{YoshinobuKrauseMiyamotoetal.2018, author = {Yoshinobu, Tatsuo and Krause, Steffi and Miyamoto, Ko-ichiro and Werner, Frederik and Poghossian, Arshak and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {(Bio-)chemical Sensing and Imaging by LAPS and SPIM}, series = {Label-free biosensing: advanced materials, devices and applications}, booktitle = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {103 -- 132}, year = {2018}, abstract = {The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications.}, language = {en} } @article{SchoeningPoghossian2008, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Silicon-based field-effect devices for (bio-)chemical sensing}, series = {International Conference on Advanced Semiconductor Devices and Microsystems, 2008. ASDAM 2008}, journal = {International Conference on Advanced Semiconductor Devices and Microsystems, 2008. ASDAM 2008}, address = {Smolenice, Slovakia}, isbn = {978-1-4244-2325-5}, pages = {31 -- 38}, year = {2008}, language = {en} } @inproceedings{MolinnusHardtKaeveretal.2017, author = {Molinnus, Denise and Hardt, Gabriel and K{\"a}ver, Larissa and Willenberg, Holger S. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline Based on Bioelectrocatalytical System to Support Tumor Diagnostic Technology}, series = {MDPI Proceedings}, booktitle = {MDPI Proceedings}, doi = {10.3390/proceedings1040506}, pages = {4 Seiten}, year = {2017}, language = {en} } @article{PoghossianBaeckerMayeretal.2015, author = {Poghossian, Arshak and B{\"a}cker, Matthias and Mayer, Dirk and Sch{\"o}ning, Michael Josef}, title = {Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids}, series = {Nanoscale}, journal = {Nanoscale}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, issn = {2040-3372 (E-Journal); 2040-3364 (Print)}, doi = {10.1039/C4NR05987E}, pages = {1023 -- 1031}, year = {2015}, language = {en} } @article{PoghossianBaadeEmonsetal.2001, author = {Poghossian, Arshak and Baade, A. and Emons, H. and Sch{\"o}ning, Michael Josef}, title = {Application of ISFET for pH measurements in rain droplets}, series = {Sensors and Actuators B. 76 (2001), H. 1-3}, journal = {Sensors and Actuators B. 76 (2001), H. 1-3}, isbn = {0925-4005}, pages = {634 -- 638}, year = {2001}, language = {en} } @article{KassabHanPoghossianetal.2004, author = {Kassab, T. and Han, Y. and Poghossian, Arshak and Ingebrandt, S. and Offenh{\"a}usser, A. and Sch{\"o}ning, Michael Josef}, title = {Detection of layerby-layer adsorbed polyelectrolytes by means of field-effect based capacitive EIS structures}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {1034 -- 1035}, year = {2004}, language = {en} }