@inproceedings{KonstantinidisDachwaldOhndorfetal.2013, author = {Konstantinidis, K. and Dachwald, Bernd and Ohndorf, A. and Dykta, P. and Voigt, K. and F{\"o}rstner, R.}, title = {Enceladus explorer (ENEX): A lander mission to probe subglacial water pockets on Saturn's moon enceladus for life}, series = {64th International Astronautical Congress 2013 (IAC 2013) : Beijing, China, 23 - 27 September 2013. (Proceedings of the International Astronautical Congress, IAC ; 2)}, booktitle = {64th International Astronautical Congress 2013 (IAC 2013) : Beijing, China, 23 - 27 September 2013. (Proceedings of the International Astronautical Congress, IAC ; 2)}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Astronautical Congress <64, 2013, Beijing>}, isbn = {978-1-62993-909-4}, pages = {1340 -- 1350}, year = {2013}, language = {en} } @inproceedings{DachwaldFeldmannEspeetal.2012, author = {Dachwald, Bernd and Feldmann, Marco and Espe, Clemens and Plescher, Engelbert and Konstantinidis, K. and Forstner, R.}, title = {Enceladus explorer - A maneuverable subsurface probe for autonomous navigation through deep ice}, series = {63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3)}, booktitle = {63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3)}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Astronautical Congress <63, 2012, Napoli>}, isbn = {978-1-62276-979-7}, pages = {1756 -- 1766}, year = {2012}, language = {en} } @techreport{BlandfordDachwaldDigeletal.2015, author = {Blandford, Daniel and Dachwald, Bernd and Digel, Ilya and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecke, Hannah and Kowalski, Julia and Lindner, Peter and Plescher, Engelbert and Sch{\"o}ngarth, Sarah}, title = {Enceladus Explorer : Schlussbericht — Version: 1.0}, publisher = {FH Aachen}, address = {Aachen}, doi = {10.2314/GBV:86319950X}, year = {2015}, language = {de} } @article{Dachwald1996, author = {Dachwald, Bernd}, title = {Entwicklung sicherer und wartbarer Software f{\"u}r den Eurofighter}, series = {Soldat und Technik : Strategie und Technik, Sicherheit (1996)}, journal = {Soldat und Technik : Strategie und Technik, Sicherheit (1996)}, isbn = {0038-0989}, pages = {663 -- 668}, year = {1996}, language = {de} } @article{DachwaldCarnelliVasile2006, author = {Dachwald, Bernd and Carnelli, I. and Vasile, M.}, title = {Evolutionary Neurocontrol as a Novel Method for Low-Thrust Gravity Assist Trajectory Optimization / I. Carnelli ; B. Dachwald ; M. Vasile}, series = {Proceedings of the Twenty-Fifth International Symposium on Space Technology and Science (Selected papers) : Kanazawa, [June 4 through June 11, 2006, at Kanazawa-shi Kanko Kaikan in Kanazawa city] / [Japan Society for Aeronautical and Space Sciences. Kohtaro Matsumoto [ed.-in-chief]}, journal = {Proceedings of the Twenty-Fifth International Symposium on Space Technology and Science (Selected papers) : Kanazawa, [June 4 through June 11, 2006, at Kanazawa-shi Kanko Kaikan in Kanazawa city] / [Japan Society for Aeronautical and Space Sciences. Kohtaro Matsumoto [ed.-in-chief]}, publisher = {JSASS}, address = {Tokyo}, isbn = {4-99005-002-9}, pages = {569 -- 574}, year = {2006}, language = {en} } @article{DachwaldCarnelliVasile2009, author = {Dachwald, Bernd and Carnelli, Ian and Vasile, Massimiliano}, title = {Evolutionary Neurocontrol: A Novel Method for Low-Thrust Gravity-Assist Trajectory Optimization / Carnelli, Ian ; Dachwald, Bernd ; Vasile, Massimiliano}, series = {Journal of guidance control and dynamics. 32 (2009), H. 2}, journal = {Journal of guidance control and dynamics. 32 (2009), H. 2}, publisher = {AIAA}, address = {Reston, Va.}, isbn = {0731-5090}, pages = {616 -- 625}, year = {2009}, language = {en} } @article{Dachwald2004, author = {Dachwald, Bernd}, title = {Evolutionary Neurocontrol: A Smart Method for Global Optimization of Low-Thrust Trajectories}, series = {22nd AIAA Applied Aerodynamics Conference and Exhibit - AIAA/AAS Astrodynamics Specialist Conference and Exhibit - AIAA Guidance, Navigation, and Control Conference and Exhibit - AIAA Modeling and Simulation Technologies Conference and Exhibit - AIAA Atmospheric Flight Mechanics Conference and Exhibit : 16 - 19 August 2004, Providence, Rhode Island / American Institute of Aeronautics and Astronautics. - (AIAA meeting papers on disc ; 2004,14-15)}, journal = {22nd AIAA Applied Aerodynamics Conference and Exhibit - AIAA/AAS Astrodynamics Specialist Conference and Exhibit - AIAA Guidance, Navigation, and Control Conference and Exhibit - AIAA Modeling and Simulation Technologies Conference and Exhibit - AIAA Atmospheric Flight Mechanics Conference and Exhibit : 16 - 19 August 2004, Providence, Rhode Island / American Institute of Aeronautics and Astronautics. - (AIAA meeting papers on disc ; 2004,14-15)}, publisher = {American Inst. of Aeronautics and Astronautics}, address = {Reston, Va.}, pages = {2 CD-ROMs}, year = {2004}, language = {en} } @article{LeimenaArtmannDachwaldetal.2010, author = {Leimena, W. and Artmann, Gerhard and Dachwald, Bernd and Temiz Artmann, Ayseg{\"u}l and Gossmann, Matthias and Digel, Ilya}, title = {Feasibility of an in-situ microbial decontamination of an ice-melting probe}, series = {Eurasian Chemico-Technological Journal. 12 (2010), H. 2}, journal = {Eurasian Chemico-Technological Journal. 12 (2010), H. 2}, isbn = {1562-3920}, pages = {145 -- 150}, year = {2010}, language = {en} } @article{BaaderBoxbergChenetal.2023, author = {Baader, Fabian and Boxberg, Marc S. and Chen, Qian and F{\"o}rstner, Roger and Kowalski, Julia and Dachwald, Bernd}, title = {Field-test performance of an ice-melting probe in a terrestrial analogue environment}, series = {Icarus}, journal = {Icarus}, number = {409}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.icarus.2023.115852}, pages = {Artikel 115852}, year = {2023}, abstract = {Melting probes are a proven tool for the exploration of thick ice layers and clean sampling of subglacial water on Earth. Their compact size and ease of operation also make them a key technology for the future exploration of icy moons in our Solar System, most prominently Europa and Enceladus. For both mission planning and hardware engineering, metrics such as efficiency and expected performance in terms of achievable speed, power requirements, and necessary heating power have to be known. Theoretical studies aim at describing thermal losses on the one hand, while laboratory experiments and field tests allow an empirical investigation of the true performance on the other hand. To investigate the practical value of a performance model for the operational performance in extraterrestrial environments, we first contrast measured data from terrestrial field tests on temperate and polythermal glaciers with results from basic heat loss models and a melt trajectory model. For this purpose, we propose conventions for the determination of two different efficiencies that can be applied to both measured data and models. One definition of efficiency is related to the melting head only, while the other definition considers the melting probe as a whole. We also present methods to combine several sources of heat loss for probes with a circular cross-section, and to translate the geometry of probes with a non-circular cross-section to analyse them in the same way. The models were selected in a way that minimizes the need to make assumptions about unknown parameters of the probe or the ice environment. The results indicate that currently used models do not yet reliably reproduce the performance of a probe under realistic conditions. Melting velocities and efficiencies are constantly overestimated by 15 to 50 \% in the models, but qualitatively agree with the field test data. Hence, losses are observed, that are not yet covered and quantified by the available loss models. We find that the deviation increases with decreasing ice temperature. We suspect that this mismatch is mainly due to the too restrictive idealization of the probe model and the fact that the probe was not operated in an efficiency-optimized manner during the field tests. With respect to space mission engineering, we find that performance and efficiency models must be used with caution in unknown ice environments, as various ice parameters have a significant effect on the melting process. Some of these are difficult to estimate from afar.}, language = {en} } @article{DachwaldSchmidtSeboldtetal.2003, author = {Dachwald, Bernd and Schmidt, Tanja D. and Seboldt, Wolfgang and Auweter-Kurtz,}, title = {Flight Opportunities from Mars to Earth for Piloted Missions Using Continuous Thrust Propulsion / Schmidt, Tanja D. ; Dachwald, Bernd ; Seboldt, Wolfgang ; Auweter-Kurtz, Monika}, publisher = {-}, pages = {1 -- 9}, year = {2003}, language = {en} }