@article{SchlamannYoonMaderwaldetal.2010, author = {Schlamann, Marc and Yoon, Min-Suk and Maderwald, Stefan and Pietrzyk, Thomas and Bitz, Andreas and Gerwig, Marcus and Forsting, Michael and Ladd, Susanne C. and Ladd, Mark E. and Kastrup, Oliver}, title = {Short term effects of magnetic resonance imaging on excitability of the motor cortex at 1.5T and 7T}, series = {Academic Radiology}, volume = {17}, journal = {Academic Radiology}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1076-6332}, doi = {10.1016/j.acra.2009.10.004}, pages = {277 -- 281}, year = {2010}, abstract = {Rationale and Objectives The increasing spread of high-field and ultra-high-field magnetic resonance imaging (MRI) scanners has encouraged new discussion of the safety aspects of MRI. Few studies have been published on possible cognitive effects of MRI examinations. The aim of this study was to examine whether changes are measurable after MRI examinations at 1.5 and 7 T by means of transcranial magnetic stimulation (TMS). Materials and Methods TMS was performed in 12 healthy, right-handed male volunteers. First the individual motor threshold was specified, and then the cortical silent period (SP) was measured. Subsequently, the volunteers were exposed to the 1.5-T MRI scanner for 63 minutes using standard sequences. The MRI examination was immediately followed by another TMS session. Fifteen minutes later, TMS was repeated. Four weeks later, the complete setting was repeated using a 7-T scanner. Control conditions included lying in the 1.5-T scanner for 63 minutes without scanning and lying in a separate room for 63 minutes. TMS was performed in the same way in each case. For statistical analysis, Wilcoxon's rank test was performed. Results Immediately after MRI exposure, the SP was highly significantly prolonged in all 12 subjects at 1.5 and 7 T. The motor threshold was significantly increased. Fifteen minutes after the examination, the measured value tended toward normal again. Control conditions revealed no significant differences. Conclusion MRI examinations lead to a transient and highly significant alteration in cortical excitability. This effect does not seem to depend on the strength of the static magnetic field.}, language = {en} } @article{KraffBitzKruszonaetal.2009, author = {Kraff, Oliver and Bitz, Andreas and Kruszona, Stefan and Orzada, Stephan and Schaefer, Lena C. and Theysohn, Jens M. and Maderwald, Stefan and Ladd, Mark E. and Quick, Harald H.}, title = {An eight-channel phased array RF coil for spine MR imaging at 7 T}, series = {Investigative Radiology}, volume = {44}, journal = {Investigative Radiology}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, issn = {1536-0210}, doi = {10.1097/RLI.0b013e3181b24ab7}, pages = {734 -- 740}, year = {2009}, language = {en} } @article{SchlamannYoonMaderwaldetal.2009, author = {Schlamann, M. and Yoon, M.-S. and Maderwald, S. and Pietrzyk, T. and Bitz, Andreas and Gerwig, M. and Forsting, M. and Ladd, S. C. and Ladd, M. E. and Kastrup, O.}, title = {Auswirkungen der Magnetresonanztomografie auf die Elektrophysiologie des motorischen Kortex: eine Studie mit transkranieller Magnetstimulation}, series = {R{\"o}Fo - Fortschritte auf dem Giebiet der R{\"o}ntgenstrahlen und der bildgebenden Verfahren}, volume = {181}, journal = {R{\"o}Fo - Fortschritte auf dem Giebiet der R{\"o}ntgenstrahlen und der bildgebenden Verfahren}, number = {3}, publisher = {Thieme}, address = {Stuttgart}, issn = {1438-9029}, doi = {10.1055/s-0028-1109038}, pages = {215 -- 219}, year = {2009}, language = {de} } @article{KlompBitzHeerschapetal.2009, author = {Klomp, D. W. J. and Bitz, Andreas and Heerschap, A. and Scheenen, T. W. J.}, title = {Proton spectroscopic imaging of the human prostate at 7 T}, series = {NMR in Biomedicine}, volume = {22}, journal = {NMR in Biomedicine}, number = {5}, issn = {1099-1492}, doi = {10.1002/nbm.1360}, pages = {495 -- 501}, year = {2009}, language = {en} } @article{LerchlKruegerNiehausetal.2008, author = {Lerchl, Alexander and Kr{\"u}ger, Heike and Niehaus, Michael and Streckert, Joachim R. and Bitz, Andreas and Hansen, Volkert}, title = {Effects of mobile phone electromagnetic fields at nonthermal SAR values on melatonin and body weight of Djungarian hamsters (Phodopus sungorus)}, series = {Journal of Pineal Research}, volume = {44}, journal = {Journal of Pineal Research}, number = {3}, issn = {1600-079X}, doi = {10.1111/j.1600-079X.2007.00522.x}, pages = {267 -- 272}, year = {2008}, language = {en} } @article{FiedlerLaddBitz2017, author = {Fiedler, Thomas M. and Ladd, Mark E. and Bitz, Andreas}, title = {SAR Simulations \& Safety}, series = {NeuroImage}, journal = {NeuroImage}, number = {Epub ahead of print}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2017.03.035}, year = {2017}, language = {en} } @article{NoureddineKraffLaddetal.2017, author = {Noureddine, Yacine and Kraff, Oliver and Ladd, Mark E. and Wrede, Karsten H. and Chen, Bixia and Quick, Harald H. and Schaefers, Gregor and Bitz, Andreas}, title = {In vitro and in silico assessment of RF-induced heating around intracranial aneurysm clips at 7 Tesla}, series = {Magnetic Resonance in Medicine}, journal = {Magnetic Resonance in Medicine}, number = {Early view}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.26650}, pages = {14 Seiten}, year = {2017}, language = {en} } @article{FiedlerLaddBitz2017, author = {Fiedler, Thomas M. and Ladd, Mark E. and Bitz, Andreas}, title = {RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus temperature limits}, series = {Medical Physics}, volume = {44}, journal = {Medical Physics}, number = {1}, doi = {10.1002/mp.12034}, pages = {143 -- 157}, year = {2017}, language = {en} } @article{LagemaatVosMaasetal.2014, author = {Lagemaat, Miriam W. and Vos, Eline K. and Maas, Marnix C. and Bitz, Andreas and Orzada, Stephan and Uden, Mark J. van and Kobus, Thiele and Heerschap, Arend and Scheenen, Tom W. J.}, title = {Phosphorus magnetic resonance spectroscopic imaging at 7 T in patients with prostate cancer}, series = {Investigative Radiology}, volume = {49}, journal = {Investigative Radiology}, number = {5}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia, Pa.}, issn = {1536-0210}, doi = {10.1097/RLI.0000000000000012}, pages = {363 -- 372}, year = {2014}, abstract = {Objectives The aim of this study was to identify characteristics of phosphorus (³¹P) spectra of the human prostate and to investigate changes of individual phospholipid metabolites in prostate cancer through in vivo ³¹P magnetic resonance spectroscopic imaging (MRSI) at 7 T. Materials and Methods In this institutional review board-approved study, 15 patients with biopsy-proven prostate cancer underwent T₂-weighted magnetic resonance imaging and 3-dimensional ³¹P MRSI at 7 T. Voxels were selected at the tumor location, in normal-appearing peripheral zone tissue, normal-appearing transition zone tissue, and in the base of the prostate close to the seminal vesicles. Phosphorus metabolite ratios were determined and compared between tissue types. Results Signals of phosphoethanolamine (PE) and phosphocholine (PC) were present and well resolved in most ³¹P spectra in the prostate. Glycerophosphocholine signals were observable in 43\% of the voxels in malignant tissue, but in only 10\% of the voxels in normal-appearing tissue away from the seminal vesicles. In many spectra, independent of tissue type, 2 peaks resonated in the chemical shift range of inorganic phosphate, possibly representing 2 separate pH compartments. The PC/PE ratio in the seminal vesicles was highly elevated compared with the prostate in 5 patients. A considerable overlap of ³¹P metabolite ratios was found between prostate cancer and normal-appearing prostate tissue, preventing direct discrimination of these tissues. The only 2 patients with high Gleason scores tumors (≥4+5) presented with high PC and glycerophosphocholine levels in their cancer lesions. Conclusions Phosphorus MRSI at 7 T shows distinct features of phospholipid metabolites in the prostate gland and its surrounding structures. In this exploratory study, no differences in ³¹P metabolite ratios were observed between prostate cancer and normal-appearing prostate tissue possibly because of the partial volume effects of small tumor foci in large MRSI voxels.}, language = {en} } @article{MaasVosLagemaatetal.2014, author = {Maas, Marnix C. and Vos, Eline K. and Lagemaat, Miriam W. and Bitz, Andreas and Orzada, Stephan and Kobus, Thiele and Kraff, Oliver and Maderwald, Stefan and Ladd, Mark E. and Scheenen, Tom W. J.}, title = {Feasibility of T₂-weighted turbo spin echo imaging of the human prostate at 7 tesla}, series = {Magnetic Resonance in Medicine}, volume = {71}, journal = {Magnetic Resonance in Medicine}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.24818}, pages = {1711 -- 1719}, year = {2014}, abstract = {Purpose To demonstrate that high quality T₂-weighted (T2w) turbo spin-echo (TSE) imaging of the complete prostate can be achieved routinely and within safety limits at 7 T, using an external transceive body array coil only. Methods Nine healthy volunteers and 12 prostate cancer patients were scanned on a 7 T whole-body system. Preparation consisted of B₀ and radiofrequency shimming and localized flip angle calibration. T₁ and T₂ relaxation times were measured and used to define the T2w-TSE protocol. T2w imaging was performed using a TSE sequence (pulse repetition time/echo time 3000-3640/71 ms) with prolonged excitation and refocusing pulses to reduce specific absorption rate. Results High quality T2w TSE imaging was performed in less than 2 min in all subjects. Tumors of patients with gold-standard tumor localization (MR-guided biopsy or prostatectomy) were well visualized on 7 T imaging (n = 3). The number of consecutive slices achievable within a 10-g averaged specific absorption rate limit of 10 W/kg was ≥28 in all subjects, sufficient for full prostate coverage with 3-mm slices in at least one direction. Conclusion High quality T2w TSE prostate imaging can be performed routinely and within specific absorption rate limits at 7 T with an external transceive body array.}, language = {en} } @article{UmutluKraffFischeretal.2013, author = {Umutlu, Lale and Kraff, Oliver and Fischer, Anja and Kinner, Sonja and Maderwald, Stefan and Nassenstein, Kai and Nensa, Felix and Gr{\"u}neisen, Johannes and Orzada, Stephan and Bitz, Andreas and Forsting, Michael and Ladd, Mark E. and Lauenstein, Thomas C.}, title = {Seven-Tesla MRI of the female pelvis}, series = {European Radiology}, volume = {23}, journal = {European Radiology}, number = {9}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084}, doi = {10.1007/s00330-013-2868-0}, pages = {2364 -- 2373}, year = {2013}, language = {en} } @article{BitzFelderWittig2013, author = {Bitz, Andreas and Felder, Jorg and Wittig, Tilmann}, title = {Designing MRI Coils with Aid of Simulation}, series = {Microwaves \& RF}, volume = {52}, journal = {Microwaves \& RF}, number = {7}, publisher = {Penton}, address = {Cleveland, Ohio}, issn = {0745-2993}, pages = {56}, year = {2013}, language = {en} } @article{KraffWredeSchoembergetal.2013, author = {Kraff, Oliver and Wrede, Karsten H. and Schoemberg, Tobias and Dammann, Philipp and Noureddine, Yacine and Orzada, Stephan and Ladd, Mark E. and Bitz, Andreas}, title = {MR safety assessment of potential RF heating from cranial fixation plates at 7 T}, series = {Medical Physics}, volume = {40}, journal = {Medical Physics}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {2473-4209}, doi = {10.1118/1.4795347}, pages = {042302-1 -- 042302-10}, year = {2013}, language = {en} } @article{UmutluMaderwaldKinneretal.2013, author = {Umutlu, L. and Maderwald, S. and Kinner, S. and Kraff, O. and Bitz, Andreas and Orzada, S. and Johst, S. and Wrede, K. and Forsting, M. and Ladd, M. E. and Lauenstein, T. C. and Quick, H. H.}, title = {First-pass contrast-enhanced renal MRA at 7 Tesla: initial results}, series = {European Radiology}, volume = {23}, journal = {European Radiology}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084}, doi = {10.1007/s00330-012-2666-0}, pages = {1059 -- 1066}, year = {2013}, language = {en} } @article{UmutluOrzadaKinneretal.2011, author = {Umutlu, Lale and Orzada, Stephan and Kinner, Sonja and Maderwald, Stefan and Bronte, Irina and Bitz, Andreas and Kraff, Oliver and Ladd, Susanne C. and Antoch, Gerald and Ladd, Mark E. and Quick, Harald H. and Lauenstein, Thomas C.}, title = {Renal imaging at 7 Tesla: preliminary results}, series = {European Radiology}, volume = {21}, journal = {European Radiology}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084}, pages = {841 -- 849}, year = {2011}, abstract = {Objective To investigate the feasibility of 7T MR imaging of the kidneys utilising a custom-built 8-channel transmit/receive radiofrequency body coil. Methods In vivo unenhanced MR was performed in 8 healthy volunteers on a 7T whole-body MR system. After B0 shimming the following sequences were obtained: 1) 2D and 3D spoiled gradient-echo sequences (FLASH, VIBE), 2) T1-weighted 2D in and opposed phase 3) True-FISP imaging and 4) a T2-weighted turbo spin echo (TSE) sequence. Visual evaluation of the overall image quality was performed by two radiologists. Results Renal MRI at 7T was feasible in all eight subjects. Best image quality was found using T1-weighted gradient echo MRI, providing high anatomical details and excellent conspicuity of the non-enhanced vasculature. With successful shimming, B1 signal voids could be effectively reduced and/or shifted out of the region of interest in most sequence types. However, T2-weighted TSE imaging remained challenging and strongly impaired because of signal heterogeneities in three volunteers. Conclusion The results demonstrate the feasibility and diagnostic potential of dedicated 7T renal imaging. Further optimisation of imaging sequences and dedicated RF coil concepts are expected to improve the acquisition quality and ultimately provide high clinical diagnostic value.}, language = {en} } @article{FiedlerOrzadaFloeseretal.2022, author = {Fiedler, Thomas M. and Orzada, Stephan and Fl{\"o}ser, Martina and Rietsch, Stefan H. G. and Schmidt, Simon and Stelter, Jonathan K. and Wittrich, Marco and Quick, Harald H. and Bitz, Andreas and Ladd, Mark E.}, title = {Performance and safety assessment of an integrated transmit array for body imaging at 7 T under consideration of specificabsorption rate, tissue temperature, and thermal dose}, series = {NMR in Biomedicine}, volume = {35}, journal = {NMR in Biomedicine}, number = {5}, publisher = {Wiley}, issn = {0952-3480 (Print)}, doi = {10.1002/nbm.4656}, pages = {1 -- 17}, year = {2022}, abstract = {In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.}, language = {en} } @article{FiedlerOrzadaFloeseretal.2021, author = {Fiedler, Thomas M. and Orzada, Stephan and Fl{\"o}ser, Martina and Rietsch, Stefan H. G. and Quick, Harald H. and Ladd, Mark E. and Bitz, Andreas}, title = {Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T}, series = {NMR in Biomedicine}, volume = {34}, journal = {NMR in Biomedicine}, number = {7}, publisher = {Wiley}, address = {Weinheim}, issn = {0952-3480 (ISSN)}, doi = {10.1002/nbm.4515}, pages = {18 SeitenWiley}, year = {2021}, abstract = {The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit ele- ments. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual obser- vation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the devia- tion from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, espe- cially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homoge- neous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.}, language = {en} }