@article{BungCrookstonValero2020, author = {Bung, Daniel B. and Crookston, Brian M. and Valero, Daniel}, title = {Turbulent free-surface monitoring with an RGB-D sensor: the hydraulic jump case}, series = {Journal of Hydraulic Research}, journal = {Journal of Hydraulic Research}, publisher = {Taylor \& Francis}, address = {London}, issn = {1814-2079}, doi = {10.1080/00221686.2020.1844810}, year = {2020}, language = {en} } @inproceedings{BungValero2015, author = {Bung, Daniel B. and Valero, Daniel}, title = {Image processing for bubble image velocimetry in self-aerated flows}, series = {E-proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Hague, the Netherlands}, booktitle = {E-proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Hague, the Netherlands}, organization = {IAHR World Congress <36, 2015, Den Haag>}, pages = {1 -- 8}, year = {2015}, language = {en} } @inproceedings{BungValero2016, author = {Bung, Daniel B. and Valero, Daniel}, title = {Application of the optical flow method to velocity determination in hydraulic structure models}, series = {Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016}, booktitle = {Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016}, editor = {Crookston, B. and Tullis, B.}, isbn = {978-1-884575-75-4}, doi = {10.15142/T3150628160853}, pages = {223 -- 232}, year = {2016}, language = {en} } @inproceedings{BungValero2016, author = {Bung, Daniel B. and Valero, Daniel}, title = {Image processing techniques for velocity estimation in highly aerated flows: bubble image velocimetry vs. optical flow}, series = {Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016)}, booktitle = {Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016)}, editor = {Dewals, Benjamin}, publisher = {CRC Press}, isbn = {978-1-138-02977-4}, doi = {10.1201/b21902-31}, pages = {151 -- 157}, year = {2016}, language = {en} } @inproceedings{BungValero2017, author = {Bung, Daniel B. and Valero, Daniel}, title = {FlowCV - An open-source toolbox for computer vision applications in turbulent flows}, series = {Proceedings of the 37th IAHR World Congress August 13 - 18, 2017, Kuala Lumpur, Malaysia}, booktitle = {Proceedings of the 37th IAHR World Congress August 13 - 18, 2017, Kuala Lumpur, Malaysia}, issn = {2521-716X}, pages = {5356 -- 5365}, year = {2017}, language = {en} } @article{BungValero2018, author = {Bung, Daniel B. and Valero, Daniel}, title = {Re-aeration on stepped spillways with special consideration of entrained and entrapped air}, series = {Geosciences}, volume = {8}, journal = {Geosciences}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2076-3263}, pages = {Article number 333}, year = {2018}, abstract = {As with most high-velocity free-surface flows, stepped spillway flows become self-aerated when the drop height exceeds a critical value. Due to the step-induced macro-roughness, the flow field becomes more turbulent than on a similar smooth-invert chute. For this reason, cascades are oftentimes used as re-aeration structures in wastewater treatment. However, for stepped spillways as flood release structures downstream of deoxygenated reservoirs, gas transfer is also of crucial significance to meet ecological requirements. Prediction of mass transfer velocities becomes challenging, as the flow regime differs from typical previously studied flow conditions. In this paper, detailed air-water flow measurements are conducted on stepped spillway models with different geometry, with the aim to estimate the specific air-water interface. Re-aeration performances are determined by applying the absorption method. In contrast to earlier studies, the aerated water body is considered a continuous mixture up to a level where 75\% air concentration is reached. Above this level, a homogenous surface wave field is considered, which is found to significantly affect the total air-water interface available for mass transfer. Geometrical characteristics of these surface waves are obtained from high-speed camera investigations. The results show that both the mean air concentration and the mean flow velocity have influence on the mass transfer. Finally, an empirical relationship for the mass transfer on stepped spillway models is proposed.}, language = {en} } @article{BungValero2016, author = {Bung, Daniel B. and Valero, Daniel}, title = {Optical flow estimation in aerated flows}, series = {Journal of Hydraulic Research}, volume = {54}, journal = {Journal of Hydraulic Research}, number = {5}, publisher = {Taylor \& Francis}, address = {London}, doi = {10.1080/00221686.2016.1173600}, pages = {575 -- 580}, year = {2016}, abstract = {Optical flow estimation is known from Computer Vision where it is used to determine obstacle movements through a sequence of images following an assumption of brightness conservation. This paper presents the first study on application of the optical flow method to aerated stepped spillway flows. For this purpose, the flow is captured with a high-speed camera and illuminated with a synchronized LED light source. The flow velocities, obtained using a basic Horn-Schunck method for estimation of the optical flow coupled with an image pyramid multi-resolution approach for image filtering, compare well with data from intrusive conductivity probe measurements. Application of the Horn-Schunck method yields densely populated flow field data sets with velocity information for every pixel. It is found that the image pyramid approach has the most significant effect on the accuracy compared to other image processing techniques. However, the final results show some dependency on the pixel intensity distribution, with better accuracy found for grey values between 100 and 150.}, language = {en} } @inproceedings{BungValeroHermens2018, author = {Bung, Daniel B. and Valero, Daniel and Hermens, G.}, title = {Hybrid investigation on the hydraulic performance of a new trapezoidal fishway}, series = {7th IAHR International Symposium on Hydraulic Structures, ISHS 2018}, booktitle = {7th IAHR International Symposium on Hydraulic Structures, ISHS 2018}, isbn = {978-069213277-7}, doi = {10.15142/T3S06R}, pages = {184 -- 193}, year = {2018}, language = {de} } @inproceedings{KerpenBungValeroetal.2016, author = {Kerpen, Nils B. and Bung, Daniel B. and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {8th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Qingdao, China}, booktitle = {8th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Qingdao, China}, pages = {6 Seiten}, year = {2016}, language = {en} } @article{KerpenBungValeroetal.2017, author = {Kerpen, Nils B. and Bung, Daniel B. and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {Journal of Ocean University of China}, volume = {16}, journal = {Journal of Ocean University of China}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1993-5021}, doi = {10.1007/s11802-017-3355-z}, pages = {649 -- 654}, year = {2017}, language = {en} }