@article{Gaigall2021, author = {Gaigall, Daniel}, title = {Test for Changes in the Modeled Solvency Capital Requirement of an Internal Risk Model}, series = {ASTIN Bulletin}, volume = {51}, journal = {ASTIN Bulletin}, number = {3}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {1783-1350}, doi = {10.1017/asb.2021.20}, pages = {813 -- 837}, year = {2021}, abstract = {In the context of the Solvency II directive, the operation of an internal risk model is a possible way for risk assessment and for the determination of the solvency capital requirement of an insurance company in the European Union. A Monte Carlo procedure is customary to generate a model output. To be compliant with the directive, validation of the internal risk model is conducted on the basis of the model output. For this purpose, we suggest a new test for checking whether there is a significant change in the modeled solvency capital requirement. Asymptotic properties of the test statistic are investigated and a bootstrap approximation is justified. A simulation study investigates the performance of the test in the finite sample case and confirms the theoretical results. The internal risk model and the application of the test is illustrated in a simplified example. The method has more general usage for inference of a broad class of law-invariant and coherent risk measures on the basis of a paired sample.}, language = {en} } @article{Gaigall2020, author = {Gaigall, Daniel}, title = {Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic on partly not identically distributed data}, series = {Communications in Statistics - Theory and Methods}, volume = {51}, journal = {Communications in Statistics - Theory and Methods}, number = {12}, publisher = {Taylor \& Francis}, address = {London}, issn = {1532-415X}, doi = {10.1080/03610926.2020.1805767}, pages = {4006 -- 4028}, year = {2020}, abstract = {The established Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic is investigated for partly not identically distributed data. Surprisingly, it turns out that the statistic has the well-known distribution-free limiting null distribution of the classical criterion under standard regularity conditions. An application is testing goodness-of-fit for the regression function in a non parametric random effects meta-regression model, where the consistency is obtained as well. Simulations investigate size and power of the approach for small and moderate sample sizes. A real data example based on clinical trials illustrates how the test can be used in applications.}, language = {en} } @article{Gaigall2020, author = {Gaigall, Daniel}, title = {Testing marginal homogeneity of a continuous bivariate distribution with possibly incomplete paired data}, series = {Metrika}, volume = {2020}, journal = {Metrika}, number = {83}, publisher = {Springer}, issn = {1435-926X}, doi = {10.1007/s00184-019-00742-5}, pages = {437 -- 465}, year = {2020}, abstract = {We discuss the testing problem of homogeneity of the marginal distributions of a continuous bivariate distribution based on a paired sample with possibly missing components (missing completely at random). Applying the well-known two-sample Cr{\´a}mer-von-Mises distance to the remaining data, we determine the limiting null distribution of our test statistic in this situation. It is seen that a new resampling approach is appropriate for the approximation of the unknown null distribution. We prove that the resulting test asymptotically reaches the significance level and is consistent. Properties of the test under local alternatives are pointed out as well. Simulations investigate the quality of the approximation and the power of the new approach in the finite sample case. As an illustration we apply the test to real data sets.}, language = {en} } @article{Gaigall2020, author = {Gaigall, Daniel}, title = {Rothman-Woodroofe symmetry test statistic revisited}, series = {Computational Statistics \& Data Analysis}, volume = {2020}, journal = {Computational Statistics \& Data Analysis}, number = {142}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-9473}, doi = {10.1016/j.csda.2019.106837}, pages = {Artikel 106837}, year = {2020}, abstract = {The Rothman-Woodroofe symmetry test statistic is revisited on the basis of independent but not necessarily identically distributed random variables. The distribution-freeness if the underlying distributions are all symmetric and continuous is obtained. The results are applied for testing symmetry in a meta-analysis random effects model. The consistency of the procedure is discussed in this situation as well. A comparison with an alternative proposal from the literature is conducted via simulations. Real data are analyzed to demonstrate how the new approach works in practice.}, language = {en} } @article{BaringhausGaigall2019, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {On an asymptotic relative efficiency concept based on expected volumes of confidence regions}, series = {Statistics - A Journal of Theoretical and Applied Statistic}, volume = {53}, journal = {Statistics - A Journal of Theoretical and Applied Statistic}, number = {6}, publisher = {Taylor \& Francis}, address = {London}, issn = {1029-4910}, doi = {10.1080/02331888.2019.1683560}, pages = {1396 -- 1436}, year = {2019}, abstract = {The paper deals with an asymptotic relative efficiency concept for confidence regions of multidimensional parameters that is based on the expected volumes of the confidence regions. Under standard conditions the asymptotic relative efficiencies of confidence regions are seen to be certain powers of the ratio of the limits of the expected volumes. These limits are explicitly derived for confidence regions associated with certain plugin estimators, likelihood ratio tests and Wald tests. Under regularity conditions, the asymptotic relative efficiency of each of these procedures with respect to each one of its competitors is equal to 1. The results are applied to multivariate normal distributions and multinomial distributions in a fairly general setting.}, language = {en} } @article{Gaigall2019, author = {Gaigall, Daniel}, title = {On a new approach to the multi-sample goodness-of-fit problem}, series = {Communications in Statistics - Simulation and Computation}, volume = {53}, journal = {Communications in Statistics - Simulation and Computation}, number = {10}, publisher = {Taylor \& Francis}, address = {London}, issn = {1532-4141}, doi = {10.1080/03610918.2019.1618472}, pages = {2971 -- 2989}, year = {2019}, abstract = {Suppose we have k samples X₁,₁,…,X₁,ₙ₁,…,Xₖ,₁,…,Xₖ,ₙₖ with different sample sizes ₙ₁,…,ₙₖ and unknown underlying distribution functions F₁,…,Fₖ as observations plus k families of distribution functions {G₁(⋅,ϑ);ϑ∈Θ},…,{Gₖ(⋅,ϑ);ϑ∈Θ}, each indexed by elements ϑ from the same parameter set Θ, we consider the new goodness-of-fit problem whether or not (F₁,…,Fₖ) belongs to the parametric family {(G₁(⋅,ϑ),…,Gₖ(⋅,ϑ));ϑ∈Θ}. New test statistics are presented and a parametric bootstrap procedure for the approximation of the unknown null distributions is discussed. Under regularity assumptions, it is proved that the approximation works asymptotically, and the limiting distributions of the test statistics in the null hypothesis case are determined. Simulation studies investigate the quality of the new approach for small and moderate sample sizes. Applications to real-data sets illustrate how the idea can be used for verifying model assumptions.}, language = {en} } @article{DitzhausGaigall2018, author = {Ditzhaus, Marc and Gaigall, Daniel}, title = {A consistent goodness-of-fit test for huge dimensional and functional data}, series = {Journal of Nonparametric Statistics}, volume = {30}, journal = {Journal of Nonparametric Statistics}, number = {4}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {1029-0311}, doi = {10.1080/10485252.2018.1486402}, pages = {834 -- 859}, year = {2018}, abstract = {A nonparametric goodness-of-fit test for random variables with values in a separable Hilbert space is investigated. To verify the null hypothesis that the data come from a specific distribution, an integral type test based on a Cram{\´e}r-von-Mises statistic is suggested. The convergence in distribution of the test statistic under the null hypothesis is proved and the test's consistency is concluded. Moreover, properties under local alternatives are discussed. Applications are given for data of huge but finite dimension and for functional data in infinite dimensional spaces. A general approach enables the treatment of incomplete data. In simulation studies the test competes with alternative proposals.}, language = {en} } @article{BaringhausGaigallThiele2018, author = {Baringhaus, Ludwig and Gaigall, Daniel and Thiele, Jan Philipp}, title = {Statistical inference for L²-distances to uniformity}, series = {Computational Statistics}, volume = {2018}, journal = {Computational Statistics}, number = {33}, publisher = {Springer}, address = {Berlin}, issn = {1613-9658}, doi = {10.1007/s00180-018-0820-0}, pages = {1863 -- 1896}, year = {2018}, abstract = {The paper deals with the asymptotic behaviour of estimators, statistical tests and confidence intervals for L²-distances to uniformity based on the empirical distribution function, the integrated empirical distribution function and the integrated empirical survival function. Approximations of power functions, confidence intervals for the L²-distances and statistical neighbourhood-of-uniformity validation tests are obtained as main applications. The finite sample behaviour of the procedures is illustrated by a simulation study.}, language = {en} }