@inproceedings{FingerdeVriesVosetal.2020, author = {Finger, Felix and de Vries, Reynard and Vos, Roelof and Braun, Carsten and Bil, Cees}, title = {A comparison of hybrid-electric aircraft sizing methods}, series = {AIAA Scitech 2020 Forum}, booktitle = {AIAA Scitech 2020 Forum}, doi = {10.2514/6.2020-1006}, pages = {31 Seiten}, year = {2020}, language = {en} } @inproceedings{GoettenFingerHavermannetal.2019, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {A highly automated method for simulating airfoil characteristics at low Reynolds number using a RANS - transition approach}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany}, doi = {10.25967/490026}, pages = {1 -- 14}, year = {2019}, language = {en} } @inproceedings{FingerBraunBil2017, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {A Review of Configuration Design for Distributed Propulsion Transitioning VTOL Aircraft}, series = {Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea}, booktitle = {Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea}, pages = {15 Seiten}, year = {2017}, language = {en} } @inproceedings{GoettenFingerMarinoetal.2019, author = {G{\"o}tten, Falk and Finger, Felix and Marino, Matthew and Bil, Cees and Havermann, Marc and Braun, Carsten}, title = {A review of guidelines and best practices for subsonic aerodynamic simulations using RANS CFD}, series = {Asia-Pacific International Symposium on Aerospace Technology (APISAT), At Gold Coast, Australia, 04. - 06. Dezember 2019}, booktitle = {Asia-Pacific International Symposium on Aerospace Technology (APISAT), At Gold Coast, Australia, 04. - 06. Dezember 2019}, isbn = {978-1-925627-40-4}, pages = {19 Seiten}, year = {2019}, language = {de} } @inproceedings{FingerKhalsaKreyeretal.2019, author = {Finger, Felix and Khalsa, R. and Kreyer, J{\"o}rg and Mayntz, Joscha and Braun, Carsten and Dahmann, Peter and Esch, Thomas and Kemper, Hans and Schmitz, O. and Bragard, Michael}, title = {An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft}, series = {Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt}, pages = {15 Seiten}, year = {2019}, abstract = {In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented.}, language = {en} } @inproceedings{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {An Initial Sizing Methodology for Hybrid-Electric Light Aircraft}, series = {AIAA AVIATION Forum 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia, June 25 - 29, 2018}, booktitle = {AIAA AVIATION Forum 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia, June 25 - 29, 2018}, doi = {10.2514/6.2018-4229}, year = {2018}, language = {en} } @inproceedings{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Case studies in initial sizing for hybrid-electric general aviation aircraft}, series = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, booktitle = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, doi = {10.2514/6.2018-5005}, year = {2018}, language = {en} } @article{FingerBraunBil2020, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft}, series = {Journal of Aircraft}, volume = {57}, journal = {Journal of Aircraft}, number = {5}, publisher = {AIAA}, address = {Reston, Va.}, issn = {1533-3868}, doi = {10.2514/1.C035897}, year = {2020}, abstract = {Until electric energy storage systems are ready to allow fully electric aircraft, the combination of combustion engine and electric motor as a hybrid-electric propulsion system seems to be a promising intermediate solution. Consequently, the design space for future aircraft is expanded considerably, as serial hybrid-electric, parallel hybrid-electric, fully electric, and conventional propulsion systems must all be considered. While the best propulsion system depends on a multitude of requirements and considerations, trends can be observed for certain types of aircraft and certain types of missions. This Paper provides insight into some factors that drive a new design toward either conventional or hybrid propulsion systems. General aviation aircraft, regional transport aircraft vertical takeoff and landing air taxis, and unmanned aerial vehicles are chosen as case studies. Typical missions for each class are considered, and the aircraft are analyzed regarding their takeoff mass and primary energy consumption. For these case studies, a high-level approach is chosen, using an initial sizing methodology. Only parallel-hybrid-electric powertrains are taken into account. Aeropropulsive interaction effects are neglected. Results indicate that hybrid-electric propulsion systems should be considered if the propulsion system is sized by short-duration power constraints. However, if the propulsion system is sized by a continuous power requirement, hybrid-electric systems offer hardly any benefit.}, language = {en} } @inproceedings{FingerBraunBil2020, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft}, series = {AIAA SciTech Forum 2020, 06.01.2020 - 10.01.2020, Orlando}, booktitle = {AIAA SciTech Forum 2020, 06.01.2020 - 10.01.2020, Orlando}, doi = {10.2514/6.2020-1502}, pages = {15 Seiten}, year = {2020}, language = {en} } @inproceedings{Finger2016, author = {Finger, Felix}, title = {Comparative Performance and Benefit Assessment of VTOL and CTOL UAVs}, series = {Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016}, booktitle = {Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016}, pages = {10 Seiten}, year = {2016}, language = {en} } @inproceedings{GoettenFinger2019, author = {G{\"o}tten, Falk and Finger, Felix}, title = {Conceptual Design of a Modular 150 kg Vertical Take-off and Landing Unmanned Aerial Vehicle}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany}, pages = {1 -- 10}, year = {2019}, language = {en} } @inproceedings{FingerGoettenBraunetal.2019, author = {Finger, Felix and G{\"o}tten, Falk and Braun, Carsten and Bil, Cees}, title = {Cost Estimation Methods for Hybrid-Electric General Aviation Aircraft}, series = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, booktitle = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, pages = {1 -- 13}, year = {2019}, language = {en} } @inproceedings{GoettenFingerBraunetal.2019, author = {G{\"o}tten, Falk and Finger, Felix and Braun, Carsten and Havermann, Marc and Bil, C. and Gomez, F.}, title = {Empirical Correlations for Geometry Build-Up of Fixed Wing Unmanned Air Vehicles}, series = {APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)}, booktitle = {APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-13-3305-7}, doi = {10.1007/978-981-13-3305-7_109}, pages = {1365 -- 1381}, year = {2019}, abstract = {The results of a statistical investigation of 42 fixed-wing, small to medium sized (20 kg-1000 kg) reconnaissance unmanned air vehicles (UAVs) are presented. Regression analyses are used to identify correlations of the most relevant geometry dimensions with the UAV's maximum take-off mass. The findings allow an empirical based geometry-build up for a complete unmanned aircraft by referring to its take-off mass only. This provides a bridge between very early design stages (initial sizing) and the later determination of shapes and dimensions. The correlations might be integrated into a UAV sizing environment and allow designers to implement more sophisticated drag and weight estimation methods in this process. Additional information on correlation factors for a rough drag estimation methodology indicate how this technique can significantly enhance the accuracy of early design iterations.}, language = {en} } @article{GoettenFingerHavermannetal.2021, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Marino, M. and Bil, C.}, title = {Full configuration drag estimation of short-to-medium range fixed-wing UAVs and its impact on initial sizing optimization}, series = {CEAS Aeronautical Journal}, volume = {12}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Berlin}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-021-00522-w}, pages = {589 -- 603}, year = {2021}, abstract = {The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used for surveillance, reconnaissance, and search and rescue missions. The aircraft is simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV's parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft's total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft.}, language = {en} } @inproceedings{GoettenFingerHavermannetal.2020, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Full Configuration Drag Estimation of Small-to-Medium Range UAVs and its Impact on Initial Sizing Optimization}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, year = {2020}, language = {en} } @article{FingerBraunBil2020, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of Battery Performance on the Initial Sizing of Hybrid-Electric General Aviation Aircraft}, series = {Journal of Aerospace Engineering}, volume = {33}, journal = {Journal of Aerospace Engineering}, number = {3}, publisher = {ASCE}, address = {Reston, Va.}, issn = {1943-5525}, doi = {10.1061/(ASCE)AS.1943-5525.0001113}, year = {2020}, abstract = {Studies suggest that hybrid-electric aircraft have the potential to generate fewer emissions and be inherently quieter when compared to conventional aircraft. By operating combustion engines together with an electric propulsion system, synergistic benefits can be obtained. However, the performance of hybrid-electric aircraft is still constrained by a battery's energy density and discharge rate. In this paper, the influence of battery performance on the gross mass for a four-seat general aviation aircraft with a hybrid-electric propulsion system is analyzed. For this design study, a high-level approach is chosen, using an innovative initial sizing methodology to determine the minimum required aircraft mass for a specific set of requirements and constraints. Only the peak-load shaving operational strategy is analyzed. Both parallel- and serial-hybrid propulsion configurations are considered for two different missions. The specific energy of the battery pack is varied from 200 to 1,000 W⋅h/kg, while the discharge time, and thus the normalized discharge rating (C-rating), is varied between 30 min (2C discharge rate) and 2 min (30C discharge rate). With the peak-load shaving operating strategy, it is desirable for hybrid-electric aircraft to use a light, low capacity battery system to boost performance. For this case, the battery's specific power rating proved to be of much higher importance than for full electric designs, which have high capacity batteries. Discharge ratings of 20C allow a significant take-off mass reduction aircraft. The design point moves to higher wing loadings and higher levels of hybridization if batteries with advanced technology are used.}, language = {en} } @article{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs}, series = {CEAS Aeronautical Journal}, volume = {10}, journal = {CEAS Aeronautical Journal}, number = {3}, publisher = {Springer}, issn = {1869-5582 print}, doi = {10.1007/s13272-018-0352-x}, pages = {843}, year = {2018}, abstract = {One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost-benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters.}, language = {en} } @inproceedings{FingerBraunBil2019, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of Engine Failure Constraints on the Initial Sizing of Hybrid-Electric GA Aircraft}, series = {AIAA Scitech 2019 Forum}, booktitle = {AIAA Scitech 2019 Forum}, doi = {10.2514/6.2019-1812}, year = {2019}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2019, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of Propulsion Technology Levels on the Sizing and Energy Consumption for Serial HybridElectric General Aviation Aircraft}, series = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, booktitle = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, pages = {14 Seiten}, year = {2019}, language = {en} } @inproceedings{FingerGoettenBraun2018, author = {Finger, Felix and G{\"o}tten, Falk and Braun, Carsten}, title = {Initial Sizing for a Family of Hybrid-Electric VTOL General Aviation Aircraft}, series = {67. Deutscher Luft- und Raumfahrtkongress 2018}, booktitle = {67. Deutscher Luft- und Raumfahrtkongress 2018}, pages = {14 S.}, year = {2018}, language = {en} }