@inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Serial Hybrid Propulsion Systems}, series = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, booktitle = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, pages = {11 S.}, year = {2018}, language = {en} } @inproceedings{FingerGoettenBraun2018, author = {Finger, Felix and G{\"o}tten, Falk and Braun, Carsten}, title = {Initial Sizing for a Family of Hybrid-Electric VTOL General Aviation Aircraft}, series = {67. Deutscher Luft- und Raumfahrtkongress 2018}, booktitle = {67. Deutscher Luft- und Raumfahrtkongress 2018}, pages = {14 S.}, year = {2018}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Parallel Hybrid Propulsion Systems}, series = {Deutscher Luft- und Raumfahrtkongress 2018}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2018}, doi = {10.25967/480227}, pages = {15 S.}, year = {2018}, language = {en} } @article{GoettenFingerHavermannetal.2018, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Gomez, Francisco and Bill, C.}, title = {On the flight performance impact of landing gear drag reduction methods for unmanned air vehicles}, series = {Deutscher Luft- und Raumfahrtkongress 2018}, journal = {Deutscher Luft- und Raumfahrtkongress 2018}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/480058}, pages = {11 S.}, year = {2018}, abstract = {The flight performance impact of three different landing gear configurations on a small, fixed-wing UAV is analyzed with a combination of RANS CFD calculations and an incremental flight performance algorithm. A standard fixed landing gear configuration is taken as a baseline, while the influence of retracting the landing gear or applying streamlined fairings is investigated. A retraction leads to a significant parasite drag reduction, while also fairings promise large savings. The increase in lift-to-drag ratio is reduced at high lift coefficients due to the influence of induced drag. All configurations are tested on three different design missions with an incremental flight performance algorithm. A trade-off study is performed using the retracted or faired landing gear's weight increase as a variable. The analysis reveals only small mission performance gains as the aerodynamic improvements are negated by weight penalties. A new workflow for decision-making is presented that allows to estimate if a change in landing gear configuration is beneficial for a small UAV.}, language = {en} } @inproceedings{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Case studies in initial sizing for hybrid-electric general aviation aircraft}, series = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, booktitle = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, doi = {10.2514/6.2018-5005}, year = {2018}, language = {en} } @article{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs}, series = {CEAS Aeronautical Journal}, volume = {10}, journal = {CEAS Aeronautical Journal}, number = {3}, publisher = {Springer}, issn = {1869-5582 print}, doi = {10.1007/s13272-018-0352-x}, pages = {843}, year = {2018}, abstract = {One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost-benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters.}, language = {en} } @inproceedings{Finger2016, author = {Finger, Felix}, title = {Comparative Performance and Benefit Assessment of VTOL and CTOL UAVs}, series = {Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016}, booktitle = {Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016}, pages = {10 Seiten}, year = {2016}, language = {en} } @inproceedings{FingerBraunBil2017, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {The Impact of Electric Propulsion on the Performance of VTOL UAVs}, series = {Deutscher Luft- und Raumfahrtkongress 2017, DLRK , M{\"u}nchen}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2017, DLRK , M{\"u}nchen}, year = {2017}, language = {en} } @inproceedings{FingerBraunBil2017, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {A Review of Configuration Design for Distributed Propulsion Transitioning VTOL Aircraft}, series = {Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea}, booktitle = {Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea}, pages = {15 Seiten}, year = {2017}, language = {en} } @inproceedings{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {An Initial Sizing Methodology for Hybrid-Electric Light Aircraft}, series = {AIAA AVIATION Forum 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia, June 25 - 29, 2018}, booktitle = {AIAA AVIATION Forum 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia, June 25 - 29, 2018}, doi = {10.2514/6.2018-4229}, year = {2018}, language = {en} } @article{FingerBilBraun2019, author = {Finger, Felix and Bil, Cees and Braun, Carsten}, title = {Initial Sizing Methodology for Hybrid-Electric General Aviation Aircraft}, series = {Journal of Aircraft}, volume = {57}, journal = {Journal of Aircraft}, number = {2}, issn = {1533-3868}, doi = {10.2514/1.C035428}, pages = {245 -- 255}, year = {2019}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2019, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of Propulsion Technology Levels on the Sizing and Energy Consumption for Serial HybridElectric General Aviation Aircraft}, series = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, booktitle = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, pages = {14 Seiten}, year = {2019}, language = {en} } @inproceedings{RingsLudowicyFingeretal.2019, author = {Rings, Ren{\´e} and Ludowicy, Jonas and Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Sensitivity Analysis of General Aviation Aircraft with Parallel Hybrid-Electric Propulsion Systems}, series = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, booktitle = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, pages = {14 Seiten}, year = {2019}, language = {en} } @inproceedings{FingerBraunBil2019, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of Engine Failure Constraints on the Initial Sizing of Hybrid-Electric GA Aircraft}, series = {AIAA Scitech 2019 Forum}, booktitle = {AIAA Scitech 2019 Forum}, doi = {10.2514/6.2019-1812}, year = {2019}, language = {en} } @inproceedings{GoettenFingerHavermannetal.2019, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {A highly automated method for simulating airfoil characteristics at low Reynolds number using a RANS - transition approach}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany}, doi = {10.25967/490026}, pages = {1 -- 14}, year = {2019}, language = {en} } @inproceedings{FingerGoettenBraunetal.2019, author = {Finger, Felix and G{\"o}tten, Falk and Braun, Carsten and Bil, Cees}, title = {Mass, Primary Energy, and Cost - The Impact of Optimization Objectives on the Initial Sizing of Hybrid-Electric General Aviation Aircraft}, series = {Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany}, doi = {10.25967/490012}, pages = {1 -- 17}, year = {2019}, language = {en} } @inproceedings{GoettenFinger2019, author = {G{\"o}tten, Falk and Finger, Felix}, title = {Conceptual Design of a Modular 150 kg Vertical Take-off and Landing Unmanned Aerial Vehicle}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany}, pages = {1 -- 10}, year = {2019}, language = {en} } @inproceedings{GoettenFingerHavermannetal.2020, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Full Configuration Drag Estimation of Small-to-Medium Range UAVs and its Impact on Initial Sizing Optimization}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, year = {2020}, language = {en} } @article{FingerBraunBil2020, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft}, series = {Journal of Aircraft}, volume = {57}, journal = {Journal of Aircraft}, number = {5}, publisher = {AIAA}, address = {Reston, Va.}, issn = {1533-3868}, doi = {10.2514/1.C035897}, year = {2020}, abstract = {Until electric energy storage systems are ready to allow fully electric aircraft, the combination of combustion engine and electric motor as a hybrid-electric propulsion system seems to be a promising intermediate solution. Consequently, the design space for future aircraft is expanded considerably, as serial hybrid-electric, parallel hybrid-electric, fully electric, and conventional propulsion systems must all be considered. While the best propulsion system depends on a multitude of requirements and considerations, trends can be observed for certain types of aircraft and certain types of missions. This Paper provides insight into some factors that drive a new design toward either conventional or hybrid propulsion systems. General aviation aircraft, regional transport aircraft vertical takeoff and landing air taxis, and unmanned aerial vehicles are chosen as case studies. Typical missions for each class are considered, and the aircraft are analyzed regarding their takeoff mass and primary energy consumption. For these case studies, a high-level approach is chosen, using an initial sizing methodology. Only parallel-hybrid-electric powertrains are taken into account. Aeropropulsive interaction effects are neglected. Results indicate that hybrid-electric propulsion systems should be considered if the propulsion system is sized by short-duration power constraints. However, if the propulsion system is sized by a continuous power requirement, hybrid-electric systems offer hardly any benefit.}, language = {en} } @inproceedings{HippeFingerGoettenetal.2020, author = {Hippe, Jonas and Finger, Felix and G{\"o}tten, Falk and Braun, Carsten}, title = {Propulsion System Qualification of a 25 kg VTOL-UAV: Hover Performance of Single and Coaxial Rotors and Wind-Tunnel Experiments on Cruise Propellers}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, year = {2020}, language = {en} }