@inproceedings{BergmannGoettenBraunetal.2022, author = {Bergmann, Ole and G{\"o}tten, Falk and Braun, Carsten and Janser, Frank}, title = {Comparison and evaluation of blade element methods against RANS simulations and test data}, series = {CEAS Aeronautical Journal}, volume = {13}, booktitle = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-022-00579-1}, pages = {535 -- 557}, year = {2022}, abstract = {This paper compares several blade element theory (BET) method-based propeller simulation tools, including an evaluation against static propeller ground tests and high-fidelity Reynolds-Average Navier Stokes (RANS) simulations. Two proprietary propeller geometries for paraglider applications are analysed in static and flight conditions. The RANS simulations are validated with the static test data and used as a reference for comparing the BET in flight conditions. The comparison includes the analysis of varying 2D aerodynamic airfoil parameters and different induced velocity calculation methods. The evaluation of the BET propeller simulation tools shows the strength of the BET tools compared to RANS simulations. The RANS simulations underpredict static experimental data within 10\% relative error, while appropriate BET tools overpredict the RANS results by 15-20\% relative error. A variation in 2D aerodynamic data depicts the need for highly accurate 2D data for accurate BET results. The nonlinear BET coupled with XFOIL for the 2D aerodynamic data matches best with RANS in static operation and flight conditions. The novel BET tool PropCODE combines both approaches and offers further correction models for highly accurate static and flight condition results.}, language = {en} } @inproceedings{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {In-flight vibration-based structural health monitoring of aircraft wings}, series = {30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea}, booktitle = {30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea}, pages = {10 Seiten}, year = {2016}, abstract = {This work presents a methodology for automated damage-sensitive feature extraction and anomaly detection under multivariate operational variability for in-flight assessment of wings. The method uses a passive excitation approach, i. e. without the need for artificial actuation. The modal system properties (natural frequencies and damping ratios) are used as damage-sensitive features. Special emphasis is placed on the use of Fiber Bragg Grating (FBG) sensing technology and the consideration of Operational and Environmental Variability (OEV). Measurements from a wind tunnel investigation with a composite cantilever equipped with FBG and piezoelectric sensors are used to successfully detect an impact damage. In addition, the feasibility of damage localisation and severity estimation is evaluated based on the coupling found between damageand OEV-induced feature changes.}, language = {en} } @inproceedings{MoehrenBergmannJanseretal.2023, author = {M{\"o}hren, Felix and Bergmann, Ole and Janser, Frank and Braun, Carsten}, title = {On the determination of harmonic propeller loads}, series = {AIAA SCITECH 2023 Forum}, booktitle = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, doi = {10.2514/6.2023-2404}, pages = {12 Seiten}, year = {2023}, abstract = {Dynamic loads significantly impact the structural design of propeller blades due to fatigue and static strength. Since propellers are elastic structures, deformations and aerodynamic loads are coupled. In the past, propeller manufacturers established procedures to determine unsteady aerodynamic loads and the structural response with analytical steady-state calculations. According to the approach, aeroelastic coupling primarily consists of torsional deformations. They neglect bending deformations, deformation velocities, and inertia terms. This paper validates the assumptions above for a General Aviation propeller and a lift propeller for urban air mobility or large cargo drones. Fully coupled reduced-order simulations determine the dynamic loads in the time domain. A quasi-steady blade element momentum approach transfers loads to one-dimensional finite beam elements. The simulation results are in relatively good agreement with the analytical method for the General Aviation propeller but show increasing errors for the slender lift propeller. The analytical approach is modified to consider the induced velocities. Still, inertia and velocity proportional terms play a significant role for the lift propeller due to increased elasticity. The assumption that only torsional deformations significantly impact the dynamic loads of propellers is not valid. Adequate determination of dynamic loads of such designs requires coupled aeroelastic simulations or advanced analytical procedures.}, language = {en} } @inproceedings{NeuJanserKhatibietal.2015, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Operational modal analysis of a cantilever in a wind tunnel using optical fiber bragg grating sensors}, series = {6th International Operational Modal Analysis Conference. IOMACĀ“15. 2015 May 12-14 Gijon - Spain}, booktitle = {6th International Operational Modal Analysis Conference. IOMACĀ“15. 2015 May 12-14 Gijon - Spain}, doi = {10.13140/RG.2.1.3753.0324}, pages = {10 S.}, year = {2015}, language = {en} } @inproceedings{HoevelerJanser2016, author = {Hoeveler, Bastian and Janser, Frank}, title = {The aerodynamically optimized design of a fan-in-wing duct}, series = {Applied Aerodynamics Research Conference 2016, Bristol, GB, Jul 19-21, 2016}, booktitle = {Applied Aerodynamics Research Conference 2016, Bristol, GB, Jul 19-21, 2016}, isbn = {1-85768-371-4}, pages = {1 -- 10}, year = {2016}, language = {en} }