@article{WardoyoNoorElbersetal.2020, author = {Wardoyo, Arinto Y.P. and Noor, Johan A.E. and Elbers, Gereon and Schmitz, Sandra and Flaig, Sascha T. and Budianto, Arif}, title = {Characterizing volcanic ash elements from the 2015 eruptions of bromo and raung volcanoes, Indonesia}, series = {Polish Journal of Environmental Studies}, volume = {29}, journal = {Polish Journal of Environmental Studies}, number = {2}, publisher = {HARD}, address = {Olsztyn}, issn = {2083-5906}, doi = {10.15244/pjoes/99101}, pages = {1899 -- 1907}, year = {2020}, abstract = {The volcanic eruptions of Mt. Bromo and Mt. Raung in East Java, Indonesia, in 2015 perturbed volcanic materials and affected surface-layer air quality at surrounding locations. During the episodes, the volcanic ash from the eruptions influenced visibility, traffic accidents, flight schedules, and human health. In this research, the volcanic ash particles were collected and characterized by relying on the detail of physical observation. We performed an assessment of the volcanic ash elements to characterize the volcanic ash using two different methods which are aqua regia extracts followed by MP-AES and XRF laboratory test of bulk samples. The analysis results showed that the volcanic ash was mixed of many materials, such as Al, Si, P, K, Ca, Ti, V, Cr, Mn, Fe, Ni, and others. Fe, Si, Ca, and Al were found as the major elements, while the others were the trace elements Ba, Cr, Cu, Mn, P, Mn, Ni, Zn, Sb, Sr, and V with the minor concentrations. XRF analyses showed that Fe dominated the elements of the volcanic ash. The XRF analysis showed that Fe was at 35.40\% in Bromo and 43.00\% in Raung of the detected elements in bulk material. The results of aqua regia extracts analyzed by MP-AES were 1.80\% and 1.70\% of Fe element for Bromo and Raung volcanoes, respectively.}, language = {en} } @article{WangDruckenmuellerElbersetal.2014, author = {Wang, Ren-Qi and Druckenm{\"u}ller, Katharina and Elbers, Gereon and Guenther, Klaus and Crou{\´e}, Jean-Philippe}, title = {Analysis of aquatic-phase natural organic matter by optimized LDI-MS method}, series = {Journal of mass spectrometry}, volume = {49}, journal = {Journal of mass spectrometry}, number = {2}, publisher = {Wiley}, address = {Bognor Regis}, issn = {1096-9888}, doi = {10.1002/jms.3321}, pages = {154 -- 160}, year = {2014}, abstract = {The composition and physiochemical properties of aquatic-phase natural organic matter (NOM) are most important problems for both environmental studies and water industry. Laser desorption/ionization (LDI) mass spectrometry facilitated successful examinations of NOM, as humic and fulvic acids in NOM are readily ionized by the nitrogen laser. In this study, hydrophobic NOMs (HPO NOMs) from river, reservoir and waste water were characterized by this technique. The effect of analytical variables like concentration, solvent composition and laser energy was investigated. The exact masses of small molecular NOM moieties in the range of 200-1200 m/z were determined in reflectron mode. In addition, spectra of post-source-decay experiments in this range showed that some compounds from different natural NOMs had the same fragmental ions. In the large mass range of 1200-15 000 Da, macromolecules and their aggregates were found in HPO NOMs from natural waters. Highly humic HPO exhibited mass peaks larger than 8000 Da. On the other hand, the waste water and reservoir water mainly had relatively smaller molecules of about 2000 Da. The LDI-MS measurements indicated that highly humic river waters were able to form large aggregates and membrane foulants, while the HPO NOMs from waste water and reservoir water were unlikely to form large aggregates. Copyright © 2014 John Wiley \& Sons, Ltd.}, language = {en} } @article{TurekKettererClassenetal.2007, author = {Turek, Monika and Ketterer, Lothar and Claßen, Melanie and Berndt, Heinz and Elbers, Gereon and Kr{\"u}ger, Peter and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and Electrochemical Investigations of an EIS-(Electrolyte-Insulator-Semiconductor) based Biosensor for Cyanide Detection}, series = {Sensors}, volume = {7}, journal = {Sensors}, number = {8}, isbn = {1424-8220}, pages = {1415 -- 1426}, year = {2007}, language = {en} } @inproceedings{KasperSchiffelsKrafftetal.2016, author = {Kasper, Katharina and Schiffels, Johannes and Krafft, Simone and Kuperjans, Isabel and Elbers, Gereon and Selmer, Thorsten}, title = {Biogas Production on Demand Regulated by Butyric Acid Addition}, series = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, volume = {32}, booktitle = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, issn = {1755-1315}, doi = {10.1088/1755-1315/32/1/012009}, pages = {012009/1 -- 012009/4}, year = {2016}, language = {en} } @inproceedings{HoffmannNierenGaebetal.2019, author = {Hoffmann, Katharina and Nieren, Monika and G{\"a}b, Martina and Kasper, Anna and Elbers, Gereon}, title = {The potential of near infrared spectroscopy (NIRS) for the environmental biomonitoring of plants}, series = {International conference on Life Sciences and Technology}, volume = {276}, booktitle = {International conference on Life Sciences and Technology}, number = {012009}, issn = {1755-1315}, doi = {10.1088/1755-1315/276/1/012009}, pages = {1 -- 3}, year = {2019}, abstract = {In the current environmental condition, the increase in pollution of the air, water, and soil indirectly will induce plants stress and decrease vegetation growth rate. These issues pay more attention to be solved by scientists worldwide. The higher level of chemical pollutants also induced the gradual changes in plants metabolism and decreased enzymatic activity. Importantly, environmental biomonitoring may play a pivotal contribution to prevent biodiversity degradation and plants stress due to pollutant exposure. Several previous studies have been done to monitor the effect of environmental changes on plants growth. Among that, Near Infrared spectroscopy (NIRS) offers an alternative way to observe the significant alteration of plant physiology caused by environmental damage related to pollution. Impairment of photosynthesis, nutrient and oxidative imbalances, and mutagenesis.}, language = {en} } @article{ElbersZangBuck1990, author = {Elbers, Gereon and Zang, Thorsten and Buck, Manfred}, title = {Ruß-Immissionsmessungen im Einflußbereich des Kraftfahrzeugverkehrs}, series = {Staub, Reinhaltung der Luft : air quality control. 50 (1990)}, journal = {Staub, Reinhaltung der Luft : air quality control. 50 (1990)}, isbn = {0039-0771}, pages = {93}, year = {1990}, language = {de} } @article{ElbersThomzik1990, author = {Elbers, Gereon and Thomzik, Manfred}, title = {Das Entstehen geruchsintensiver schwefelhaltiger organischer Verbindungen in Lackierereien und M{\"o}glichkeiten zu deren Vermeidung}, series = {Aus der T{\"a}tigkeit der LIS / Landesanstalt f{\"u}r Immissionsschutz des Landes Nordrhein-Westfalen. 1989 (1990)}, journal = {Aus der T{\"a}tigkeit der LIS / Landesanstalt f{\"u}r Immissionsschutz des Landes Nordrhein-Westfalen. 1989 (1990)}, isbn = {0931-5497}, pages = {35}, year = {1990}, language = {de} } @article{ElbersRichter1994, author = {Elbers, Gereon and Richter, J.}, title = {Messung kraftfahrzeugbedingter Rußimmissionen}, series = {Staub, Reinhaltung der Luft : air quality control. 54 (1994)}, journal = {Staub, Reinhaltung der Luft : air quality control. 54 (1994)}, isbn = {0039-0771}, pages = {19}, year = {1994}, language = {de} } @article{ElbersRemmeLehmann1986, author = {Elbers, Gereon and Remme, S. and Lehmann, G.}, title = {EPR of Cr3+ in Tris(acetylacetonato)gallium(III) Single Crystals}, series = {Inorganic Chemistry. 25 (1986)}, journal = {Inorganic Chemistry. 25 (1986)}, isbn = {0020-1669}, pages = {896 -- 897}, year = {1986}, language = {en} } @article{ElbersRemmeLehmann1987, author = {Elbers, Gereon and Remme, S. and Lehmann, G.}, title = {EPR and Optical Absorption of Cr3+ in CsCl and CsBr}, series = {Physica Status Solidi (B). 142 (1987), H. 2}, journal = {Physica Status Solidi (B). 142 (1987), H. 2}, isbn = {0031-8957}, pages = {367 -- 377}, year = {1987}, language = {en} }