@inproceedings{FunkeKeinzHajAyedetal.2015, author = {Funke, Harald and Keinz, Jan and Haj Ayed, A. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Development and Testing of a Low NOx Micromix Combustion Chamber for an Industrial Gas Turbine}, series = {Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan}, booktitle = {Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan}, isbn = {978-4-89111-008-6}, pages = {131 -- 140}, year = {2015}, language = {en} } @inproceedings{FunkeHajAyedKustereretal.2014, author = {Funke, Harald and Haj Ayed, A. and Kusterer, K. and Keinz, Jan and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Numerical Study on Increased Energy Density for the DLN Micromix Hydrogen Combustion Principle}, series = {Combustion, Fuels and Emissions (ASME Turbo Expo 2014: Turbine Technical Conference and Exposition : D{\"u}sseldorf, Germany, June 16-20, 2014 ; Vol. 4A)}, booktitle = {Combustion, Fuels and Emissions (ASME Turbo Expo 2014: Turbine Technical Conference and Exposition : D{\"u}sseldorf, Germany, June 16-20, 2014 ; Vol. 4A)}, publisher = {ASME}, address = {New York, N.Y.}, isbn = {978-0-7918-4568-4}, pages = {V04AT04A057}, year = {2014}, language = {en} } @inproceedings{HorikawaKazariOkadaetal.2015, author = {Horikawa, Atsushi and Kazari, Masahide and Okada, Kunio and Funke, Harald and Keinz, Jan and Kusterer, Karsten and Haji Ayed, Anis}, title = {Developments of Hydrogen Dry Low Emission Combustion Technology}, series = {Annual Congress of Gas Turbine Society Japan, 2015}, booktitle = {Annual Congress of Gas Turbine Society Japan, 2015}, pages = {5 S.}, year = {2015}, language = {en} } @techreport{FunkeKeinz2015, author = {Funke, Harald and Keinz, Jan}, title = {FHprofUnt2012: Adaption und Optimierung des Dry-Low-NOx-Micromix-Verfahrens f{\"u}r hohe Energiedichten f{\"u}r Wasserstoff und H2-reiche Synthesegase (Kurztitel: DLN-H2-Syngas-Verbrennung) : Ver{\"o}ffentlichung der Ergebnisse von Forschungsvorhaben im BMBF-Programm : Projektlaufzeit: 01.08.2012 bis 30.04.2015 : F{\"o}rderkennzeichen: 03FH019PX2}, doi = {10.2314/GBV:86689893X}, pages = {80 S.}, year = {2015}, language = {de} } @inproceedings{FunkeKeinzBoerneretal.2016, author = {Funke, Harald and Keinz, Jan and B{\"o}rner, S. and Hendrick, P. and Elsing, R.}, title = {Testing and analysis of the impact on engine cycle parameters and control system modifications using hydrogen or methane as fuel in an industrial gas turbine}, series = {Progress in propulsion physics ; Volume 8}, booktitle = {Progress in propulsion physics ; Volume 8}, publisher = {EDP Sciences}, address = {o.O.}, organization = {European Conference for Aerospace Sciences <2013, M{\"u}nchen>}, isbn = {978-5-94588-191-4}, doi = {10.1051/eucass/201608409}, pages = {409 -- 426}, year = {2016}, language = {en} } @article{FunkeBeckmannKeinzetal.2018, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-Nox-Micromix-Combustion}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {140}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {8}, publisher = {ASME}, address = {New York, NY}, issn = {0742-4795}, doi = {10.1115/1.4038882}, pages = {9 Seiten}, year = {2018}, abstract = {The Dry-Low-NOx (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing (JICF). Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, computational fluid dynamics (CFD) analyses are validated toward experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOx emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. The performance of a hybrid eddy-break-up (EBU) model with a one-step global reaction is compared to a complex chemistry model and a flamelet generated manifolds (FGM) model, both using detailed reaction schemes for hydrogen or syngas combustion. Validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The FGM method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry.}, language = {en} } @article{FunkeBeckmannAbanteriba2019, author = {Funke, Harald and Beckmann, Nils and Abanteriba, Sylvester}, title = {An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications}, series = {International Journal of Hydrogen Energy}, volume = {44}, journal = {International Journal of Hydrogen Energy}, number = {13}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-3199}, doi = {10.1016/j.ijhydene.2019.01.161}, pages = {6978 -- 6990}, year = {2019}, language = {en} } @inproceedings{FunkeBeckmannAbanteriba2017, author = {Funke, Harald and Beckmann, Nils and Abanteriba, Sylvester}, title = {A comparison of complex chemistry mechanisms for hydrogen methane blends based on the Sandia / Sydney Bluff-Body Flame HM1}, series = {Proceedings of the Eleventh Asia-Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017}, booktitle = {Proceedings of the Eleventh Asia-Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017}, isbn = {978-1-5108-5646-2}, pages = {262 -- 265}, year = {2017}, language = {en} } @inproceedings{FunkeBeckmannAbanteriba2019, author = {Funke, Harald and Beckmann, Nils and Abanteriba, Sylvester}, title = {Development and Testing of a FuelFlex Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications With Variable Hydrogen Methane Mixtures}, series = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. June 17-21, 2019 Phoenix, Arizona, USA. Volume 4A: Combustion, Fuels, and Emissions}, booktitle = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. June 17-21, 2019 Phoenix, Arizona, USA. Volume 4A: Combustion, Fuels, and Emissions}, isbn = {978-0-7918-5861-5}, doi = {10.1115/GT2019-90095}, pages = {11 Seiten}, year = {2019}, language = {en} } @inproceedings{HorikawaOkadaUtoetal.2019, author = {Horikawa, Atsushi and Okada, Kunio and Uto, Takahiro and Uchiyama, Yuta and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Application of Low NOx Micro-mix Hydrogen Combustion to 2MW Class Industrial Gas Turbine Combustor}, series = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan}, booktitle = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan}, isbn = {978-4-89111-010-9}, pages = {1 -- 6}, year = {2019}, language = {en} } @inproceedings{FunkeBeckmann2019, author = {Funke, Harald and Beckmann, Nils}, title = {Flexible Fuel Operation of a Dry-Low-Nox Micromix Combustor with Variable Hydrogen Methane Mixtures}, series = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan}, booktitle = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan}, isbn = {978-4-89111-010-9}, year = {2019}, language = {en} } @article{FunkeKeinzKustereretal.2017, author = {Funke, Harald and Keinz, Jan and Kusterer, K. and Haj Ayed, A. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Development and Testing of a Low NOX Micromix Combustion Chamber for an Industrial Gas Turbine}, series = {International Journal of Gas Turbine, Propulsion and Power Systems}, volume = {9}, journal = {International Journal of Gas Turbine, Propulsion and Power Systems}, number = {1}, issn = {1882-5079}, doi = {10.38036/jgpp.9.1_27}, pages = {27 -- 36}, year = {2017}, abstract = {The Micromix combustion principle, based on cross-flow mixing of air and hydrogen, promises low emission applications in future gas turbines. The Micromix combustion takes place in several hundreds of miniaturized diffusion-type micro-flames. The major advantage is the inherent safety against flash-back and low NOx-emissions due to a very short residence time of reactants in the flame region. The paper gives insight into the Micromix design and scaling procedure for different energy densities and the interaction of scaling laws and key design drivers in gas turbine integration. Numerical studies, experimental testing, gas turbine integration and interface considerations are evaluated. The aerodynamic stabilization of the miniaturized flamelets and the resulting flow field, flame structure and NOx formation are analysed experimentally and numerically. The results show and confirm the successful adaption of the low NOx Micromix characteristics for a range of different nozzle sizes, energy densities and thermal power output.}, language = {de} } @inproceedings{FunkeKeinzHendrick2017, author = {Funke, Harald and Keinz, Jan and Hendrick, P.}, title = {Experimental Evaluation of the Pollutant and Noise Emissions of the GTCP 36-300 Gas Turbine Operated with Kerosene and a Low NOX Micromix Hydrogen Combustor}, series = {7th European Conference for Aeronautics and Space Sciences, EUCASS 2017}, booktitle = {7th European Conference for Aeronautics and Space Sciences, EUCASS 2017}, organization = {7th European Conference for Aeronautics and Space Sciences, EUCASS 2017-125, Milan, Italy, July 2017}, doi = {10.13009/EUCASS2017-125}, pages = {10 Seiten}, year = {2017}, language = {en} } @article{FunkeBeckmannKeinzetal.2019, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications}, series = {Journal of Thermal Science and Engineering Applications}, volume = {11}, journal = {Journal of Thermal Science and Engineering Applications}, number = {1}, publisher = {ASME}, address = {New York}, issn = {19485085}, doi = {10.1115/1.4041495}, pages = {011015}, year = {2019}, language = {en} } @inproceedings{StrieganStruthDickhoffetal.2019, author = {Striegan, Constantin J. D. and Struth, Benjamin and Dickhoff, Jens and Kusterer, Karsten and Funke, Harald and Bohn, Dieter}, title = {Numerical Simulations of the Micromix DLN Hydrogen Combustion Technology with LES and Comparison to Results of RANS and Experimental Data}, series = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan.}, booktitle = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan.}, isbn = {978-4-89111-010-9}, pages = {1 -- 9}, year = {2019}, language = {en} } @inproceedings{FunkeBeckmannKeinzetal.2017, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications}, series = {Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26-30, 2017}, booktitle = {Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26-30, 2017}, publisher = {ASME}, address = {New York}, isbn = {978-0-7918-5085-5}, doi = {10.1115/GT2017-64795}, year = {2017}, abstract = {The Dry-Low-NOx (DLN) Micromix combustion technology has been developed originally as a low emission alternative for industrial gas turbine combustors fueled with hydrogen. Currently the ongoing research process targets flexible fuel operation with hydrogen and syngas fuel. The non-premixed combustion process features jet-in-crossflow-mixing of fuel and oxidizer and combustion through multiple miniaturized flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. The paper presents the results of a numerical and experimental combustor test campaign. It is conducted as part of an integration study for a dual-fuel (H2 and H2/CO 90/10 Vol.\%) Micromix combustion chamber prototype for application under full scale, pressurized gas turbine conditions in the auxiliary power unit Honeywell Garrett GTCP 36-300. In the presented experimental studies, the integration-optimized dual-fuel Micromix combustor geometry is tested at atmospheric pressure over a range of gas turbine operating conditions with hydrogen and syngas fuel. The experimental investigations are supported by numerical combustion and flow simulations. For validation, the results of experimental exhaust gas analyses are applied. Despite the significantly differing fuel characteristics between pure hydrogen and hydrogen-rich syngas the evaluated dual-fuel Micromix prototype shows a significant low NOx performance and high combustion efficiency. The combustor features an increased energy density that benefits manufacturing complexity and costs.}, language = {en} } @inproceedings{StrieganHajAyedFunkeetal.2017, author = {Striegan, C. and Haj Ayed, A. and Funke, Harald and Loechle, S. and Kazari, M. and Horikawa, A. and Okada, K. and Koga, K.}, title = {Numerical combustion and heat transfer simulations and validation for a hydrogen fueled "micromix" test combustor in industrial gas turbine applications}, series = {Proceedings of the ASME Turbo Expo}, booktitle = {Proceedings of the ASME Turbo Expo}, number = {Volume Part F130041-4B, 2017}, isbn = {978-079185085-5}, doi = {10.1115/GT2017-64719}, year = {2017}, language = {en} } @article{TekinAshikagaHorikawaetal.2018, author = {Tekin, Nurettin and Ashikaga, Mitsugu and Horikawa, Atsushi and Funke, Harald}, title = {Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems}, series = {Gas for energy}, journal = {Gas for energy}, number = {2}, publisher = {Vulkan-Verlag}, address = {Essen}, pages = {4}, year = {2018}, abstract = {For fuel flexibility enhancement hydrogen represents a possible alternative gas turbine fuel within future low emission power generation, in case of hydrogen production by the use of renewable energy sources such as wind energy or biomass. Kawasaki Heavy Industries, Ltd. (KHI) has research and development projects for future hydrogen society; production of hydrogen gas, refinement and liquefaction for transportation and storage, and utilization with gas turbine / gas engine for the generation of electricity. In the development of hydrogen gas turbines, a key technology is the stable and low NOx hydrogen combustion, especially Dry Low Emission (DLE) or Dry Low NOx (DLN) hydrogen combustion. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for DLE hydrogen combustion. Thus, the development of DLE hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fueled gas turbines. The DLE Micro-Mix combustion principle for hydrogen fuel has been in development for many years to significantly reduce NOx emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized "diffusion-type" flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NOx-emissions due to a very short residence time of the reactants in the flame region of the micro-flames.}, language = {en} } @inproceedings{KronigerHorikawaFunkeetal.2021, author = {Kroniger, Daniel and Horikawa, Atsushi and Funke, Harald and Pf{\"a}ffle, Franziska}, title = {Numerical investigation of micromix hydrogen flames at different combustor pressure levels}, series = {The Proceedings of the International Conference on Power Engineering (ICOPE)}, booktitle = {The Proceedings of the International Conference on Power Engineering (ICOPE)}, doi = {10.1299/jsmeicope.2021.15.2021-0237}, pages = {4 Seiten}, year = {2021}, abstract = {This study investigates the influence of pressure on the temperature distribution of the micromix (MMX) hydrogen flame and the NOx emissions. A steady computational fluid dynamic (CFD) analysis is performed by simulating a reactive flow with a detailed chemical reaction model. The numerical analysis is validated based on experimental investigations. A quantitative correlation is parametrized based on the numerical results. We find, that the flame initiation point shifts with increasing pressure from anchoring behind a downstream located bluff body towards anchoring upstream at the hydrogen jet. The numerical NOx emissions trend regarding to a variation of pressure is in good agreement with the experimental results. The pressure has an impact on both, the residence time within the maximum temperature region and on the peak temperature itself. In conclusion, the numerical model proved to be adequate for future prototype design exploration studies targeting on improving the operating range.}, language = {en} } @inproceedings{HorikawaOkadaYamaguchietal.2021, author = {Horikawa, Atsushi and Okada, Kunio and Yamaguchi, Masato and Aoki, Shigeki and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine}, series = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions}, booktitle = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions}, doi = {10.1115/GT2021-59666}, pages = {13 Seiten}, year = {2021}, abstract = {Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B\&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15\%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100\% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH\%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat.}, language = {en} }