@article{FunkeDickhoffKeinzetal.2014, author = {Funke, Harald and Dickhoff, J. and Keinz, Jan and Anis, H. A. and Parente, A. and Hendrick, P.}, title = {Experimental and numerical study of the micromix combustion principle applied for hydrogen and hydrogen-rich syngas as fuel with increased energy density for industrial gas turbine applications}, series = {Energy procedia}, journal = {Energy procedia}, number = {61}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102 (E-Journal)}, doi = {10.1016/j.egypro.2014.12.201}, pages = {1736 -- 1739}, year = {2014}, abstract = {The Dry Low NOx (DLN) Micromix combustion principle with increased energy density is adapted for the industrial gas turbine APU GTCP 36-300 using hydrogen and hydrogen-rich syngas with a composition of 90\%-Vol. hydrogen (H₂) and 10\%-Vol. carbon-monoxide (CO). Experimental and numerical studies of several combustor geometries for hydrogen and syngas show the successful advance of the DLN Micromix combustion from pure hydrogen to hydrogen-rich syngas. The impact of the different fuel properties on the combustion principle and aerodynamic flame stabilization design laws, flow field, flame structure and emission characteristics is investigated by numerical analysis using a hybrid Eddy Break Up combustion model and validated against experimental results.}, language = {en} } @inproceedings{FunkeKeinzKustereretal.2015, author = {Funke, Harald and Keinz, Jan and Kusterer, K. and Haj Ayed, A. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Experimental and Numerical Study on Optimizing the DLN Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications}, series = {ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Montreal, Quebec, Canada, June 15-19, 2015}, booktitle = {ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Montreal, Quebec, Canada, June 15-19, 2015}, isbn = {978-0-7918-5668-0}, doi = {10.1115/GT2015-42043}, pages = {V04AT04A008}, year = {2015}, language = {en} } @article{FunkeKeinzKustereretal.2016, author = {Funke, Harald and Keinz, Jan and Kusterer, Karsten and Ayed, Anis Haj and Kazari, Masahide and Kitajima, Junichi and Horikawa, Atsushi and Okada, Kunio}, title = {Experimental and Numerical Study on Optimizing the Dry Low NOₓ Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications}, series = {Journal of Thermal Science and Engineering Applications}, volume = {9}, journal = {Journal of Thermal Science and Engineering Applications}, number = {2}, publisher = {ASME}, address = {New York, NY}, issn = {1948-5093}, doi = {10.1115/1.4034849}, pages = {021001 -- 021001-10}, year = {2016}, abstract = {Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low-emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to dry low NOₓ (DLN) hydrogen combustion. The DLN micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOₓ emissions. This combustion principle for air-breathing engines is based on crossflow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flashback and with low NOₓ emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high-thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high-energy injectors, while the DLN micromix characteristics of the design point, under part-load conditions, and under off-design operation are maintained. Atmospheric test rig data on NOₓ emissions, optical flame-structure, and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized micromix flamelets is particularly investigated numerically for the resulting flow field, the flame-structure, and NOₓ formation.}, language = {en} } @article{FunkeBoernerKrebsetal.2011, author = {Funke, Harald and B{\"o}rner, Sebastian and Krebs, W. and Wolf, E.}, title = {Experimental Characterization of Low NOx Micromix Prototype Combustors for Industrial Gas Turbine Applications}, series = {ASME Turbo Expo 2011 ; Vancouver, Canada, June 6-10, 2011}, journal = {ASME Turbo Expo 2011 ; Vancouver, Canada, June 6-10, 2011}, year = {2011}, language = {en} } @inproceedings{FunkeKeinzHendrick2017, author = {Funke, Harald and Keinz, Jan and Hendrick, P.}, title = {Experimental Evaluation of the Pollutant and Noise Emissions of the GTCP 36-300 Gas Turbine Operated with Kerosene and a Low NOX Micromix Hydrogen Combustor}, series = {7th European Conference for Aeronautics and Space Sciences, EUCASS 2017}, booktitle = {7th European Conference for Aeronautics and Space Sciences, EUCASS 2017}, organization = {7th European Conference for Aeronautics and Space Sciences, EUCASS 2017-125, Milan, Italy, July 2017}, doi = {10.13009/EUCASS2017-125}, pages = {10 Seiten}, year = {2017}, language = {en} } @article{BohnFunke2003, author = {Bohn, Dieter and Funke, Harald}, title = {Experimental investigations into the nonuniform flow in a 4-stage turbine with special focus on the flow equalization in the first turbine stage}, series = {ASME TURBO EXPO, Proceedings of the ASME Turbo Expo, 2003}, journal = {ASME TURBO EXPO, Proceedings of the ASME Turbo Expo, 2003}, isbn = {0-7918-3689-4}, pages = {281 -- 289}, year = {2003}, language = {en} } @article{ReckerBosschaertsWagemakersetal.2010, author = {Recker, Elmar and Bosschaerts, Walter and Wagemakers, Rolf and Hendrick, Patrick and Funke, Harald and B{\"o}rner, Sebastian}, title = {Experimental study of a round jet in cross-flow at low momentum ratio}, series = {15th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 05-08 July, 2010 - 1}, journal = {15th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 05-08 July, 2010 - 1}, pages = {1 -- 13}, year = {2010}, language = {en} } @article{FunkeBeckmann2022, author = {Funke, Harald and Beckmann, Nils}, title = {Flexible fuel operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixture}, series = {International Journal of Gas Turbine, Propulsion and Power Systems}, volume = {13}, journal = {International Journal of Gas Turbine, Propulsion and Power Systems}, number = {2}, issn = {1882-5079}, pages = {1 -- 7}, year = {2022}, abstract = {The role of hydrogen (H2) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH4) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H2/CH4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H2/CH4 fuel mixture composition is varied between 57 and 100 vol.\% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NOx performance}, language = {en} } @inproceedings{FunkeBeckmann2019, author = {Funke, Harald and Beckmann, Nils}, title = {Flexible Fuel Operation of a Dry-Low-Nox Micromix Combustor with Variable Hydrogen Methane Mixtures}, series = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan}, booktitle = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan}, isbn = {978-4-89111-010-9}, year = {2019}, language = {en} } @article{DickhoffHorikawaFunke2021, author = {Dickhoff, Jens and Horikawa, Atsushi and Funke, Harald}, title = {Hydrogen Combustion - new DLE Combustor Addresses NOx Emissions and Flashback}, series = {Turbomachinery international : the global journal of energy equipment}, volume = {62}, journal = {Turbomachinery international : the global journal of energy equipment}, number = {4}, publisher = {MJH Life Sciences}, address = {Cranbury}, issn = {2767-2328}, pages = {26 -- 27}, year = {2021}, language = {en} }