@article{HoffmannRohrbachUhletal.2022, author = {Hoffmann, Andreas and Rohrbach, Felix and Uhl, Matthias and Ceblin, Maximilian and Bauer, Thomas and Mallah, Marcel and Jacob, Timo and Heuermann, Holger and Kuehne, Alexander J. C.}, title = {Atmospheric pressure plasma-jet treatment of polyacrylonitrile-nonwovens—Stabilization and roll-to-roll processing}, series = {Journal of Applied Polymer Science}, volume = {139}, journal = {Journal of Applied Polymer Science}, number = {37}, publisher = {Wiley}, issn = {0021-8995 (Print)}, doi = {10.1002/app.52887}, pages = {1 -- 9}, year = {2022}, abstract = {Carbon nanofiber nonwovens represent a powerful class of materials with prospective application in filtration technology or as electrodes with high surface area in batteries, fuel cells, and supercapacitors. While new precursor-to-carbon conversion processes have been explored to overcome productivity restrictions for carbon fiber tows, alternatives for the two-step thermal conversion of polyacrylonitrile precursors into carbon fiber nonwovens are absent. In this work, we develop a continuous roll-to-roll stabilization process using an atmospheric pressure microwave plasma jet. We explore the influence of various plasma-jet parameters on the morphology of the nonwoven and compare the stabilized nonwoven to thermally stabilized samples using scanning electron microscopy, differential scanning calorimetry, and infrared spectroscopy. We show that stabilization with a non-equilibrium plasma-jet can be twice as productive as the conventional thermal stabilization in a convection furnace, while producing electrodes of comparable electrochemical performance.}, language = {en} } @misc{GraesslRenzHezeletal.2012, author = {Gr{\"a}ßl, Andreas and Renz, Wolfgang and Hezel, Fabian and Frauenrath, Tobias and Pfeiffer, Harald and Hoffmann, Werner and Kellmann, Peter and Martin, Conrad and Niendorf, Thoralf}, title = {Design, evaluation and application of a modular 32 channel transmit/receive surface coil array for cardiac MRI at 7T}, series = {2012 ISMRM Annual Meeting Proceedings}, journal = {2012 ISMRM Annual Meeting Proceedings}, issn = {1545-4428}, year = {2012}, abstract = {Cardiac MR (CMR) at ultrahigh (≥7.0 T) fields is regarded as one of the most challenging MRI applications. At 7.0 T image quality is not always exclusively defined by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Detrimental effects bear the potential to spoil the signal-to-noise (SNR) and contrast-to-noise (CNR) benefits of cardiac MR (CMR) at 7.0 T. B₁⁺-inhomogeneities and signal voids represent the main challenges. Various pioneering coil concepts have been proposed to tackle these issues, enabling cardiac MRI at 7.0 T. This includes a trend towards an ever larger number of transmit and receive channels. This approach affords multi-dimensional B₁⁺ modulations to improve B₁⁺ shimming performance and to enhance RF efficiency. Also, parallel imaging benefits from a high number of receive channels enabling two-dimensional acceleration. Realizing the limitations of existing coil designs tailored for UHF CMR and recognizing the opportunities of a many element TX/RX channel architecture this work proposes a modular, two dimensional 32-channel transmit and receive array using loop elements and examines its efficacy for enhanced B¹+ homogeneity and improved parallel imaging performance.}, language = {en} } @article{HoffmannUhlCeblinetal.2022, author = {Hoffmann, Andreas and Uhl, Matthias and Ceblin, Maximilian and Rohrbach, Felix and Bansmann, Joachim and Mallah, Marcel and Heuermann, Holger and Jacob, Timo and Kuehne, Alexander J.C.}, title = {Atmospheric pressure plasma-jet treatment of PAN-nonwovens—carbonization of nanofiber electrodes}, series = {C - Journal of Carbon Research}, volume = {8}, journal = {C - Journal of Carbon Research}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2311-5629}, doi = {10.3390/c8030033}, pages = {8 Seiten}, year = {2022}, abstract = {Carbon nanofibers are produced from dielectric polymer precursors such as polyacrylonitrile (PAN). Carbonized nanofiber nonwovens show high surface area and good electrical conductivity, rendering these fiber materials interesting for application as electrodes in batteries, fuel cells, and supercapacitors. However, thermal processing is slow and costly, which is why new processing techniques have been explored for carbon fiber tows. Alternatives for the conversion of PAN-precursors into carbon fiber nonwovens are scarce. Here, we utilize an atmospheric pressure plasma jet to conduct carbonization of stabilized PAN nanofiber nonwovens. We explore the influence of various processing parameters on the conductivity and degree of carbonization of the converted nanofiber material. The precursor fibers are converted by plasma-jet treatment to carbon fiber nonwovens within seconds, by which they develop a rough surface making subsequent surface activation processes obsolete. The resulting carbon nanofiber nonwovens are applied as supercapacitor electrodes and examined by cyclic voltammetry and impedance spectroscopy. Nonwovens that are carbonized within 60 s show capacitances of up to 5 F g⁻¹.}, language = {en} }