@inproceedings{O'HerasDigelTemizArtmann2009, author = {O\'Heras, Carlos and Digel, Ilya and Temiz Artmann, Ayseg{\"u}l}, title = {Nanostructured carbon-based column for LPS/protein adsorption : [abstract]}, year = {2009}, abstract = {The absence of a general method for endotoxin removal from liquid interfaces gives an opportunity to find new methods and materials to overcome this gap. Activated nanostructured carbon is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study is to find the adsorption rates for a carboneous material produced at different temperatures, as well as to reveal possible differences between the performance of the material for each of the adsorbates used during the study (hemoglobin, serum albumin and lipopolysaccharide, LPS).}, subject = {Kohlenstofffaser}, language = {en} } @inproceedings{ElBashirDigel2009, author = {ElBashir, Rasha and Digel, Ilya}, title = {Effect of nitric oxide gas on hydrogels : [abstract]}, year = {2009}, abstract = {The results support our theory that the NO gas has an influence in increasing the translational diffusion of hydrogels and it accelerates the melting process of the gels.}, subject = {Stickstoffmonoxid}, language = {en} } @inproceedings{BassamDigelArtmann2009, author = {Bassam, Rasha and Digel, Ilya and Artmann, Gerhard}, title = {Effect of nitric oxide on protein thermal stability : [abstract]}, year = {2009}, abstract = {As a deduction from these results, we can conclude that proteins mainly in vitro, denaturate totally at a temperature between 57°C -62°C, and they also affected by NO and different ions types. In which mainly, NO cause earlier protein denaturation, which means that, NO has a destabilizing effect on proteins, and also different ions will alter the protein denaturation in which, some ions will cause earlier protein denaturation while others not.}, subject = {Stickstoffmonoxid}, language = {en} } @inproceedings{KurulganDemirciLinderDemircietal.2010, author = {Kurulgan Demirci, Eylem and Linder, Peter and Demirci, Taylan and Gierkowski, Jessica R. and Digel, Ilya and Gossmann, Matthias and Temiz Artmann, Ayseg{\"u}l}, title = {rhAPC reduces the endothelial cell permeability via a decrease of cellular mechanical contractile tensions : [abstract]}, year = {2010}, abstract = {In this study, the CellDrum technology quanitfying cellular mechanical tension on a pico-scale was used to investigate the effect of LPS (lipopolysaccharide) on HAoEC (Human Aortic Endothelial Cell) tension.}, subject = {Endothelzelle}, language = {en} } @inproceedings{DigelDachwaldArtmannetal.2009, author = {Digel, Ilya and Dachwald, Bernd and Artmann, Gerhard and Linder, Peter and Funke, O.}, title = {A concept of a probe for particle analysis and life detection in icy environments}, year = {2009}, abstract = {A melting probe equipped with autofluorescence-based detection system combined with a light scattering unit, and, optionally, with a microarray chip would be ideally suited to probe icy environments like Europa's ice layer as well as the polar ice layers of Earth and Mars for recent and extinct live.}, subject = {Sonde}, language = {en} } @inproceedings{ArtmannDigelLinderetal.2011, author = {Artmann, Gerhard and Digel, Ilya and Linder, Peter and Temiz Artmann, Ayseg{\"u}l}, title = {Biophysical and Engineering Contributions to Plant Research}, year = {2011}, abstract = {Tests with palm tree leaves have just started yet and scan data are in the process to be analyzed. The final goal of future project for palm tree gender and species recognition will be to develop optical scanning technology to be applied to date palm tree leaves for in-situ screening purposes. Depending on the software used and the particular requirements of the users the technology potentially shall be able to identify palm tree diseases, palm tree gender, and species of young date palm trees by scanning leaves.}, subject = {Pflanzenphysiologie}, language = {en} } @article{SeifarthSchehlLinderetal.2011, author = {Seifarth, Volker and Schehl, D. and Linder, Peter and Gossmann, Matthias and Digel, Ilya and Artmann, Gerhard and Porst, Dariusz and Preiß, C. and Kayser, Peter and Pack, O. and Temiz Artmann, Ayseg{\"u}l}, title = {Ureplace: development of a bioreactor for in vitro culturing of cell seeded tubular vessels on collagen scaffolds}, year = {2011}, abstract = {The demand of replacements for inoperable organs exceeds the amount of available organ transplants. Therefore, tissue engineering developed as a multidisciplinary field of research for autologous in-vitro organs. Such three dimensional tissue constructs request the application of a bioreactor. The UREPLACE bioreactor is used to grow cells on tubular collagen scaffolds OPTIMAIX Sponge 1 with a maximal length of 7 cm, in order to culture in vitro an adequate ureter replacement. With a rotating unit, (urothelial) cells can be placed homogeneously on the inner scaffold surface. Furthermore, a stimulation is combined with this bioreactor resulting in an orientation of muscle cells. These culturing methods request a precise control of several parameters and actuators. A combination of a LabBox and the suitable software LabVision is used to set and conduct parameters like rotation angles, velocities, pressures and other important cell culture values. The bioreactor was tested waterproof successfully. Furthermore, the temperature controlling was adjusted to 37 °C and the CO2 - concentration regulated to 5 \%. Additionally, the pH step responses of several substances showed a perfect functioning of the designed flow chamber. All used software was tested and remained stable for several days.}, subject = {Tissue Engineering}, language = {en} }