@article{BayerTemizArtmannDigeletal.2020, author = {Bayer, Robin and Temiz Artmann, Ayseg{\"u}l and Digel, Ilya and Falkenstein, Julia and Artmann, Gerhard and Creutz, Till and Hescheler, J{\"u}rgen}, title = {Mechano-pharmacological testing of L-Type Ca²⁺ channel modulators via human vascular celldrum model}, series = {Cellular Physiology and Biochemistry}, volume = {54}, journal = {Cellular Physiology and Biochemistry}, publisher = {Cell Physiol Biochem Press}, address = {D{\"u}sseldorf}, issn = {1421-9778}, doi = {10.33594/000000225}, pages = {371 -- 383}, year = {2020}, abstract = {Background/Aims: This study aimed to establish a precise and well-defined working model, assessing pharmaceutical effects on vascular smooth muscle cell monolayer in-vitro. It describes various analysis techniques to determine the most suitable to measure the biomechanical impact of vasoactive agents by using CellDrum technology. Methods: The so-called CellDrum technology was applied to analyse the biomechanical properties of confluent human aorta muscle cells (haSMC) in monolayer. The cell generated tensions deviations in the range of a few N/m² are evaluated by the CellDrum technology. This study focuses on the dilative and contractive effects of L-type Ca²⁺ channel agonists and antagonists, respectively. We analyzed the effects of Bay K8644, nifedipine and verapamil. Three different measurement modes were developed and applied to determine the most appropriate analysis technique for the study purpose. These three operation modes are called, particular time mode" (PTM), "long term mode" (LTM) and "real-time mode" (RTM). Results: It was possible to quantify the biomechanical response of haSMCs to the addition of vasoactive agents using CellDrum technology. Due to the supplementation of 100nM Bay K8644, the tension increased approximately 10.6\% from initial tension maximum, whereas, the treatment with nifedipine and verapamil caused a significant decrease in cellular tension: 10nM nifedipine decreased the biomechanical stress around 6,5\% and 50nM verapamil by 2,8\%, compared to the initial tension maximum. Additionally, all tested measurement modes provide similar results while focusing on different analysis parameters. Conclusion: The CellDrum technology allows highly sensitive biomechanical stress measurements of cultured haSMC monolayers. The mechanical stress responses evoked by the application of vasoactive calcium channel modulators were quantified functionally (N/m²). All tested operation modes resulted in equal findings, whereas each mode features operation-related data analysis.}, language = {en} } @article{DigelTemizArtmannNishikawaetal.2004, author = {Digel, Ilya and Temiz Artmann, Ayseg{\"u}l and Nishikawa, K. and Artmann, Gerhard}, title = {Cluster air-ion effects on bacteria and moulds}, series = {Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2}, journal = {Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2}, isbn = {0932-4666}, pages = {1040 -- 1041}, year = {2004}, language = {en} } @article{DigelTemizArtmannNishikawaetal.2005, author = {Digel, Ilya and Temiz Artmann, Ayseg{\"u}l and Nishikawa, K. and Cook, M.}, title = {Bactericidal effects of plasma-generated cluster ions}, series = {Medical and Biological Engineering and Computing. 43 (2005), H. 6}, journal = {Medical and Biological Engineering and Computing. 43 (2005), H. 6}, isbn = {1741-0444}, pages = {800 -- 807}, year = {2005}, language = {en} } @article{DigelKernGeenenetal.2020, author = {Digel, Ilya and Kern, Inna and Geenen, Eva-Maria and Akimbekov, Nuraly S.}, title = {Dental plaque removal by ultrasonic toothbrushes}, series = {dentistry journal}, volume = {8}, journal = {dentistry journal}, number = {28}, publisher = {MDPI}, address = {Basel}, issn = {2304-6767}, doi = {10.3390/dj8010028}, pages = {1 -- 13}, year = {2020}, abstract = {With the variety of toothbrushes on the market, the question arises, which toothbrush is best suited to maintain oral health? This thematic review focuses first on plaque formation mechanisms and then on the plaque removal effectiveness of ultrasonic toothbrushes and their potential in preventing oral diseases like periodontitis, gingivitis, and caries. We overviewed the physical effects that occurred during brushing and tried to address the question of whether ultrasonic toothbrushes effectively reduced the microbial burden by increasing the hydrodynamic forces. The results of published studies show that electric toothbrushes, which combine ultrasonic and sonic (or acoustic and mechanic) actions, may have the most promising effect on good oral health. Existing ultrasonic/sonic toothbrush models do not significantly differ regarding the removal of dental biofilm and the reduction of gingival inflammation compared with other electrically powered toothbrushes, whereas the manual toothbrushes show a lower effectiveness.}, language = {en} } @article{DigelAkimbekovTuralievaetal.2013, author = {Digel, Ilya and Akimbekov, Nuraly S. and Turalieva, M. and Mansurov, Z. and Temiz Artmann, Ayseg{\"u}l and Eshibaev, A. and Zhubanova, A.}, title = {Usage of Carbonized Plant Wastes for Purification of Aqueous Solutions}, series = {Journal of Industrial Technology and Engineering}, volume = {2}, journal = {Journal of Industrial Technology and Engineering}, number = {07}, pages = {47 -- 54}, year = {2013}, language = {en} } @article{DigelKayserArtmann2008, author = {Digel, Ilya and Kayser, Peter and Artmann, Gerhard}, title = {Molecular processes in biological thermosensation}, series = {Journal of Biophysics. 2008 (2008)}, journal = {Journal of Biophysics. 2008 (2008)}, isbn = {1687-8000}, pages = {1 -- 9}, year = {2008}, language = {en} } @article{AlexyukBogoyavlenskiyAlexyuketal.2021, author = {Alexyuk, Madina and Bogoyavlenskiy, Andrey and Alexyuk, Pavel and Moldakhanov, Yergali and Berezin, Vladimir and Digel, Ilya}, title = {Epipelagic microbiome of the Small Aral Sea: Metagenomic structure and ecological diversity}, series = {MicrobiologyOpen}, volume = {10}, journal = {MicrobiologyOpen}, number = {1}, publisher = {Wiley}, address = {Weinheim}, issn = {2045-8827}, doi = {10.1002/mbo3.1142}, pages = {1 -- 10}, year = {2021}, abstract = {Microbial diversity studies regarding the aquatic communities that experienced or are experiencing environmental problems are essential for the comprehension of the remediation dynamics. In this pilot study, we present data on the phylogenetic and ecological structure of microorganisms from epipelagic water samples collected in the Small Aral Sea (SAS). The raw data were generated by massive parallel sequencing using the shotgun approach. As expected, most of the identified DNA sequences belonged to Terrabacteria and Actinobacteria (40\% and 37\% of the total reads, respectively). The occurrence of Deinococcus-Thermus, Armatimonadetes, Chloroflexi in the epipelagic SAS waters was less anticipated. Surprising was also the detection of sequences, which are characteristic for strict anaerobes—Ignavibacteria, hydrogen-oxidizing bacteria, and archaeal methanogenic species. We suppose that the observed very broad range of phylogenetic and ecological features displayed by the SAS reads demonstrates a more intensive mixing of water masses originating from diverse ecological niches of the Aral-Syr Darya River basin than presumed before.}, language = {en} } @article{AkimbekovMansurovJandosovetal.2013, author = {Akimbekov, Nuraly S. and Mansurov, Zulkhair and Jandosov, J. and Digel, Ilya and Gossmann, Matthias and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A.}, title = {Wound healing activity of carbonized rice husk}, publisher = {Trans Tech Publications, Switzerland}, address = {B{\"a}ch}, year = {2013}, abstract = {The carbonized rice husk (CRH) was evaluated for its wound healing activity in rats using excision models. In this study, the influences of CRH on wound healing in rat skin in vivo and cellular behavior of human dermal fibroblasts in vitro were investigated. The obtained results showed that the CRH treatment promoted wound epithelization in rats and exhibited moderate inhibition of cell proliferation in vitro. CRH with lanolin oil treated wounds were found to epithelize faster as compared to controls.}, subject = {Wundheilung}, language = {en} } @inproceedings{DigelTemizArtmannNojimaetal.2003, author = {Digel, Ilya and Temiz Artmann, Ayseg{\"u}l and Nojima, H. and Artmann, Gerhard}, title = {Some peculiarities of application of cluster ions generated by plasma in respect of indoor air purification :[abstract]}, year = {2003}, abstract = {Recently, the SHARP Corporation, Japan, has developed the world's first "Plasma Cluster Ions (PCI)" air purification technology using plasma discharge to generate cluster ions. The new plasma cluster device releases positive and negative ions into the air, which are able to decompose and deactivate harmful airborne substances by chemical reactions. Because cluster ions consist of positive and negative ions that normally exist in the natural world, they are completely harmless and safe to humans. The amount of ozone generated by cluster ions is less than 0.01 ppm, which is significantly less than the 0.05-ppm standard for industrial operations and consumer electronics. This amount, thus, has no harming effects whatsoever on the human body. But particular properties and chemical processes in PCI treatment are still under study. It has been shown that PCI in most cases show strongly pronounced irreversible killing effects in respect of airborne microflora due to free-radical induced reactions and can be considered as a potent technology to disinfect both home, medical and industrial appliances.}, subject = {Clusterion}, language = {en} } @incollection{AkimbekovZhanadilovnaUalievaetal.2020, author = {Akimbekov, Nuraly S. and Zhanadilovna, Abdieva G. and Ualieva, Perizat S. and Abaihanovna, Zhusipova D. and Digel, Ilya and Savitskaya, Irina S. and Zhubanova, Azhar Achmet}, title = {Functionalization of Carbon Based Wound Dressings with Antimicrobial Phytoextracts for Bioactive Treatment of Septic Wounds}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-11}, pages = {211 -- 228}, year = {2020}, abstract = {The treatment of septic wounds with curative dressings based on biocomposites containing sage and marigold phytoextracts was effective in in vitro and in vivo experiments. These dressings caused the purification of the wound surface from purulent-necrotic masses three days earlier than in the other experimental groups. The consequence of an increase in incidents of severe course of the wound and the observed tendency to increase the number of adverse effects is the development of long-term recurrent wound processes. To treat purulent wounds, the following tactics were used: The purulent wounds of animals were covered with the examined wound dressing, and then the next day samples were taken, the procedure was performed once in 2 days. To obtain the active nanostructured sorbents such as carbonized rice husks, they are functionalized with biologically active components possessing antimicrobial, anti-inflammatory, antitoxic, immunomodulating, antiallergic and other types of properties.}, language = {en} } @incollection{SavitskayaKistaubayevaAkimbekovetal.2020, author = {Savitskaya, Irina S. and Kistaubayeva, Aida S. and Akimbekov, Nuraly S. and Digel, Ilya and Shokatayeva, Dina and Zhubanova, Azhar Achmet}, title = {Prospective Use of Probiotics Immobilized on Sorbents with Nanostructured Surfaces}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-12}, pages = {229 -- 267}, year = {2020}, abstract = {Activated carbons are known as excellent adsorbents. Their applications include the adsorptive removal of color, odor, taste, undesirable organic and inorganic pollutants from drinking and waste water; air purification in inhabited spaces; purification of many chemicals, pharmaceutical products and many others. This chapter elucidates the role of normal microflora in the maintenance of human health and presents materials on possible clinical displays of microecological infringements and ways of their correction. It presents new developments concerning new probiotics with immobilized Lactobacillus and Bacillus. The chapter considers the mechanisms of the intestine disbacteriosis correction by sorbed probiotics. It demonstrates the advantages and creation prospects of immobilized probiotics developed on the basis of carbonized rice husk. There are great prospects for the development of medical biotechnology due to use of carbon sorbents with a nanostructured surface. Microbial communities form a biocenosis of the biotope and together with the host organism create permanent or temporary ecosystems.}, language = {en} } @incollection{ZhubanovaMansurovDigel2020, author = {Zhubanova, Azhar A. and Mansurov, Zulkhair A. and Digel, Ilya}, title = {Use of Advanced Nanomaterials for Bioremediation of Contaminated Ecosystems}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-18}, pages = {353 -- 378}, year = {2020}, abstract = {This chapter shows that nanomaterials obtained by high-temperature carbonization of inexpensive plant raw material such as rice husk, grape seeds, and walnut shells can serve as a basis for the production of highly efficient microbial drugs, biodestructors, biosorbents, and biocatalysts, which are promising for the remediation of the ecosystem contaminated with heavy and radioactive metals, oil and oil products. A strong interest in engineering zymology is dictated by the necessity to address the issues of monitoring enzymatic processes, treatment, and diagnosis of a number of common human diseases, environmental pollution, quality control of pharmaceuticals and food. Nanomaterials obtained by high-temperature carbonization of cheap plant raw material such as-rice husks, grape seeds and walnut shells, can serve as a basis for creating of highly effective microbial preparations-biodestructors, biosorbents and biocatalysts, which are promising for the use of contaminated ecosystems, and for restoration of human intestine microecology.}, language = {en} } @incollection{AkimbekovDigelRazzaque2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Razzaque, Mohammed S.}, title = {Role of vitamins in maintaining structure and function of intestinal microbiome}, series = {Comprehensive Gut Microbiota}, booktitle = {Comprehensive Gut Microbiota}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-822036-8}, doi = {10.1016/B978-0-12-819265-8.00043-7}, pages = {320 -- 334}, year = {2022}, abstract = {The recent advances in microbiology have shed light on understanding the role of vitamins beyond the nutritional range. Vitamins are critical in contributing to healthy biodiversity and maintaining the proper function of gut microbiota. The sharing of vitamins among bacterial populations promotes stability in community composition and diversity; however, this balance becomes disturbed in various pathologies. Here, we overview and analyze the ability of different vitamins to selectively and specifically induce changes in the intestinal microbial community. Some schemes and regularities become visible, which may provide new insights and avenues for therapeutic management and functional optimization of the gut microbiota.}, language = {en} } @article{ZhubanovaAknazarovMansurovetal.2010, author = {Zhubanova, Azhar A. and Aknazarov, S. K. and Mansurov, Zulkhair and Digel, Ilya and Kozhalakova, A. A. and Akimbekov, Nuraly S. and O'Heras, Carlos and Tazhibayeva, S. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Adsorption of bacterial Lipopolysaccharides and blood plasma proteins on modified carbonized materials}, year = {2010}, abstract = {Bacterial lipopolysaccharides (endotoxins) show strong biological effects at very low concentrations in human beings and many animals when entering the blood stream. These include affecting structure and function of organs and cells, changing metabolic functions, raising body temperature, triggering the coagulation cascade, modifying hemodynamics and causing septic shock. Because of this toxicity, the removal of even minute amounts is essential for safe parenteral administration of drugs and also for septic shock patients' care. The absence of a general method for endotoxin removal from liquid interfaces urgently requires finding new methods and materials to overcome this gap. Nanostructured carbonized plant parts is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study was comparative measurement of endotoxin- and blood proteins-related adsorption rate and adsorption capacity for different carboneous materials produced at different temperatures and under different surface modifications. As a main surface modificator, positively cbarged polymer, polyethileneimine (PEl) was used. Activated carbon materials showed good adsorption properties for LPS and some proteins used in the experiments. During the batch experiments, several techniques (dust removal, autoclaving) were used and optimized for improving the material's adsorption behavior. Also, with the results obtained it was possible to differentiate the materials according to their adsorption capacity and kinetic characteristics. Modification of the surface apparently has not affected hemoglobin binding to the adsorbent's surface. Obtained adsorption isotherms can be used as a powerful tool for designing of future column-based setups for blood purification from LPS, which is especially important for septic shock treatment.}, subject = {Kohlenstofffaser}, language = {en} } @article{StadlerGarveyBocahutetal.2012, author = {Stadler, Andreas M. and Garvey, G. J. and Bocahut, A. and Sacquin-Mora, S. and Digel, Ilya and Schneider, G. J. and Natali, F. and Artmann, Gerhard and Zaccai, G.}, title = {Thermal fluctuations of haemoglobin from different species : adaptation to temperature via conformational dynamics}, series = {Journal of the Royal Society Interface}, volume = {9}, journal = {Journal of the Royal Society Interface}, number = {76}, publisher = {The Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2012.0364}, pages = {2845 -- 2855}, year = {2012}, abstract = {Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 {\AA} at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits.}, language = {en} } @article{SavitskayaKistaubayevaDigeletal.2017, author = {Savitskaya, I. S. and Kistaubayeva, A. S. and Digel, Ilya and Shokatayeva, D. H.}, title = {Physicochemical and Antibacterial Properties of Composite Films Based on Bacterial Cellulose and Chitosan for Wound Dressing Materials}, series = {Eurasian Chemico-Technological Journal}, volume = {19}, journal = {Eurasian Chemico-Technological Journal}, number = {3}, issn = {2522-4867}, doi = {10.18321/ectj670}, pages = {255 -- 264}, year = {2017}, language = {en} } @inproceedings{DachwaldXuFeldmannetal.2011, author = {Dachwald, Bernd and Xu, Changsheng and Feldmann, Marco and Plescher, Engelbert and Digel, Ilya and Artmann, Gerhard}, title = {Development and testing of a subsurface probe for detection of life in deep ice : [abstract]}, year = {2011}, abstract = {We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named "IceMole", is currently developed, built, and tested at the FH Aachen University of Applied Sciences' Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth).}, subject = {Eisschicht}, language = {en} } @inproceedings{MansurovZhubanovaDigeletal.2008, author = {Mansurov, Zulkhair and Zhubanova, Azhar A. and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Savitskaja, Irina S. and Kozhalakova, A. A. and Kistaubaeva, Aida S.}, title = {The sorption of LPS toxic shock by nanoparticles on base of carbonized vegetable raw materials}, year = {2008}, abstract = {Immobilization of lactobacillus on high temperature carbonizated vegetable raw material (rice husk, grape stones) increases their physiological activity and the quantity of the antibacterial metabolits, that consequently lead to increase of the antagonistic activity of lactobacillus. It is implies that the use of the nanosorbents for the attachment of the probiotical microorganisms are highly perspective for decision the important problems, such as the probiotical preparations delivery to the right address and their attachment to intestines mucosa with the following detoxication of gastro-intestinal tract and the normalization of it's microecology. Besides that, thus, the received carbonizated nanoparticles have peculiar properties - ability to sorption of LPS toxical shock and, hence, to the detoxication of LPS.}, subject = {Kohlenstofffaser}, language = {en} } @inproceedings{DachwaldMikuckiTulaczyketal.2012, author = {Dachwald, Bernd and Mikucki, Jill A. and Tulaczyk, Slawek and Digel, Ilya and Feldmann, Marco and Espe, Clemens and Plescher, Engelbert and Xu, Changsheng}, title = {IceMole - a maneuverable probe for clean in-situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems : extended abstract / SCAR Open Science Conference 2012, Session 29: Advancing Clean Technologies for Exploration of Glacial Aquatic Ecosystems}, year = {2012}, abstract = {The "IceMole" is a novel maneuverable subsurface ice probe for clean in-situ analysis and sampling of subsurface ice and subglacial water/brine. It is developed and build at FH Aachen University of Applied Sciences' Astronautical Laboratory. A first prototype was successfully tested on the Swiss Morteratsch glacier in 2010. Clean sampling is achieved with a hollow ice screw (as it is used in mountaineering) at the tip of the probe. Maneuverability is achieved with a differentially heated melting head. Funded by the German Space Agency (DLR), a consortium led by FH Aachen currently develops a much more advanced IceMole probe, which includes a sophisticated system for obstacle avoidance, target detection, and navigation in the ice. We intend to use this probe for taking clean samples of subglacial brine at the Blood Falls (McMurdo Dry Valleys, East Antarctica) for chemical and microbiological analysis. In our conference contribution, we 1) describe the IceMole design, 2) report the results of the field tests of the first prototype on the Morteratsch glacier, 3) discuss the probe's potential for the clean in-situ analysis and sampling of subsurface ice and subglacial liquids, and 4) outline the way ahead in the development of this technology.}, subject = {Eisschicht}, language = {en} } @inproceedings{DigelTemizArtmannNojimaetal.2003, author = {Digel, Ilya and Temiz Artmann, Ayseg{\"u}l and Nojima, H. and Artmann, Gerhard}, title = {Effects of plasma generated ions on bacteria : [poster]}, year = {2003}, abstract = {Summary and Conclusions PCIs were clearly effective in terms of their antibacterial effects with the strains tested. This efficacy increased with the time the bacteries were exposed to PCIs. The bactericidal action has proved to be irreversible. PCIs were significantly less effective in shadowed areas. PCI exposure caused multiple protein damages as observed in SDS PAGE studies. There was no single but multiple molecular mechanism causing the bacterial death.}, subject = {Clusterion}, language = {en} }