@article{Wollert2017, author = {Wollert, J{\"o}rg}, title = {Echtzeit-Ethernet - Basis f{\"u}r Industrie 4.0}, series = {Design \& Elektronik}, journal = {Design \& Elektronik}, number = {12}, publisher = {WEKA-Fachmedien}, address = {Haar, M{\"u}nchen}, issn = {0933-8667}, pages = {38 -- 41}, year = {2017}, language = {de} } @inproceedings{UlmerBraunChengetal.2021, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Adapting augmented reality systems to the users' needs using gamification and error solving methods}, series = {Procedia CIRP - 54th CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0}, volume = {104}, booktitle = {Procedia CIRP - 54th CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2021.11.024}, pages = {140 -- 145}, year = {2021}, abstract = {Animations of virtual items in AR support systems are typically predefined and lack interactions with dynamic physical environments. AR applications rarely consider users' preferences and do not provide customized spontaneous support under unknown situations. This research focuses on developing adaptive, error-tolerant AR systems based on directed acyclic graphs and error resolving strategies. Using this approach, users will have more freedom of choice during AR supported work, which leads to more efficient workflows. Error correction methods based on CAD models and predefined process data create individual support possibilities. The framework is implemented in the Industry 4.0 model factory at FH Aachen.}, language = {en} } @inproceedings{EvansBraunUlmeretal.2022, author = {Evans, Benjamin and Braun, Sebastian and Ulmer, Jessica and Wollert, J{\"o}rg}, title = {AAS implementations - current problems and solutions}, series = {20th International Conference on Mechatronics - Mechatronika (ME)}, booktitle = {20th International Conference on Mechatronics - Mechatronika (ME)}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-6654-1040-3}, doi = {10.1109/ME54704.2022.9982933}, pages = {6 Seiten}, year = {2022}, abstract = {The fourth industrial revolution presents a multitude of challenges for industries, one of which being the increased flexibility required of manufacturing lines as a result of increased consumer demand for individualised products. One solution to tackle this challenge is the digital twin, more specifically the standardised model of a digital twin also known as the asset administration shell. The standardisation of an industry wide communications tool is a critical step in enabling inter-company operations. This paper discusses the current state of asset administration shells, the frameworks used to host them and their problems that need to be addressed. To tackle these issues, we propose an event-based server capable of drastically reducing response times between assets and asset administration shells and a multi-agent system used for the orchestration and deployment of the shells in the field.}, language = {en} } @inproceedings{UlmerBraunWollert2018, author = {Ulmer, Jessica and Braun, Sebastian and Wollert, J{\"o}rg}, title = {Generische IoT Adapter f{\"u}r semantische Maschinenschnittstellen}, series = {Internet of Things - vom Sensor bis zur Cloud}, booktitle = {Internet of Things - vom Sensor bis zur Cloud}, pages = {1 -- 5}, year = {2018}, language = {de} } @inproceedings{UlmerLaiChengetal.2019, author = {Ulmer, Jessica and Lai, Chow Yin and Cheng, Chi-Tsun and Wollert, J{\"o}rg}, title = {Integration von VR und AR in Produktlebenszyklen - Eine {\"U}bersicht {\"u}ber die Nutzung virtueller Technologien im industriellen Umfeld}, series = {Automation 2019}, booktitle = {Automation 2019}, pages = {1 -- 12}, year = {2019}, language = {de} } @inproceedings{UlmerBraunLaietal.2019, author = {Ulmer, Jessica and Braun, Sebastian and Lai, Chow Yin and Cheng, Chi-Tsun and Wollert, J{\"o}rg}, title = {Generic integration of VR and AR in product lifecycles based on CAD models}, series = {Proceedings of The 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019}, booktitle = {Proceedings of The 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019}, year = {2019}, language = {en} } @inproceedings{UlmerWollertChengetal.2020, author = {Ulmer, Jessica and Wollert, J{\"o}rg and Cheng, C. and Dowey, S.}, title = {Enterprise Gamification f{\"u}r produzierende mittelst{\"a}ndische Unternehmen}, series = {Automation 2020 : Shaping Automation for our Future}, booktitle = {Automation 2020 : Shaping Automation for our Future}, publisher = {VDI-Verlag}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092375-8}, doi = {10.51202/9783181023754-157}, pages = {157 -- 165}, year = {2020}, abstract = {Die fortschreitende Digitalisierung und Globalisierung fordert von den Unternehmen eine erh{\"o}hte Flexibilit{\"a}t und Anpassungsf{\"a}higkeit. Um dies zu erreichen, sind qualifizierte und engagierte Mitarbeiter/-innen unabdingbar. Gamification bietet die M{\"o}glichkeit, Besch{\"a}ftigte individuell in ihren T{\"a}tigkeiten zu unterst{\"u}tzen und mittels Feedbackmechanismen zu motivieren. In dieser Arbeit wird ein Gamification Konzept bestehend aus einem intelligenten Arbeitsplatz, einer Wissensdatenbank und einer Gamification Plattform vorgestellt, welches an bestehende Produktionsumgebungen adaptiert werden kann. Das Konzept wird am Beispiel der Longboardproduktion in der Industrie 4.0 Modellfabrik der FH Aachen implementiert und evaluiert.}, language = {de} } @inproceedings{BraunChengDoweyetal.2020, author = {Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Survey on Security Concepts to Adapt Flexible Manufacturing and Operations Management based upon Multi-Agent Systems}, series = {2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Proceedings}, booktitle = {2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Proceedings}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/ISIE45063.2020.9152210}, pages = {5 Seiten}, year = {2020}, abstract = {The increasing digitalization brings new opportunities but also puts new challenges to modern industrial systems. Software agents are one of the key technologies towards self-optimizing factories and are currently used to address the needs of cyber-physical production systems (CPPS). However their interplay in industrial settings needs to be understood better.This paper focusses on securing a cloud infrastructure for multi-agent systems for industrial sites. An industrial site contains multiple production processes that need to communicate with each other and each physical resource is abstracted with a software agent. This volatile architecture needs to be managed and protected from manipulation. The proposed infrastructure presents a security concept for TCP/IP communication between agents, machines, and external networks. It is based on open-source software and tested on a three-node edge cloud controlling a model-plant.}, language = {en} } @article{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Human-Centered Gamification Framework for Manufacturing Systems}, series = {Procedia CIRP}, volume = {93}, journal = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2020.04.076}, pages = {670 -- 675}, year = {2020}, abstract = {While bringing new opportunities, the Industry 4.0 movement also imposes new challenges to the manufacturing industry and all its stakeholders. In this competitive environment, a skilled and engaged workforce is a key to success. Gamification can generate valuable feedbacks for improving employees' engagement and performance. Currently, Gamification in workspaces focuses on computer-based assignments and training, while tasks that require manual labor are rarely considered. This research provides an overview of Enterprise Gamification approaches and evaluates the challenges. Based on that, a skill-based Gamification framework for manual tasks is proposed, and a case study in the Industry 4.0 model factory is shown.}, language = {en} } @article{UlmerBraunChengetal.2022, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Gamification of virtual reality assembly training: Effects of a combined point and level system on motivation and training results}, series = {International Journal of Human-Computer Studies}, volume = {165}, journal = {International Journal of Human-Computer Studies}, number = {Art. No. 102854}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1071-5819}, doi = {10.1016/j.ijhcs.2022.102854}, year = {2022}, abstract = {Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence.}, language = {en} }