@inproceedings{FunkeKeinzKustereretal.2015, author = {Funke, Harald and Keinz, Jan and Kusterer, K. and Haj Ayed, A. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Experimental and Numerical Study on Optimizing the DLN Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications}, series = {ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Montreal, Quebec, Canada, June 15-19, 2015}, booktitle = {ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Montreal, Quebec, Canada, June 15-19, 2015}, isbn = {978-0-7918-5668-0}, doi = {10.1115/GT2015-42043}, pages = {V04AT04A008}, year = {2015}, language = {en} } @article{FunkeKeinzKustereretal.2017, author = {Funke, Harald and Keinz, Jan and Kusterer, K. and Haj Ayed, A. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Development and Testing of a Low NOX Micromix Combustion Chamber for an Industrial Gas Turbine}, series = {International Journal of Gas Turbine, Propulsion and Power Systems}, volume = {9}, journal = {International Journal of Gas Turbine, Propulsion and Power Systems}, number = {1}, issn = {1882-5079}, doi = {10.38036/jgpp.9.1_27}, pages = {27 -- 36}, year = {2017}, abstract = {The Micromix combustion principle, based on cross-flow mixing of air and hydrogen, promises low emission applications in future gas turbines. The Micromix combustion takes place in several hundreds of miniaturized diffusion-type micro-flames. The major advantage is the inherent safety against flash-back and low NOx-emissions due to a very short residence time of reactants in the flame region. The paper gives insight into the Micromix design and scaling procedure for different energy densities and the interaction of scaling laws and key design drivers in gas turbine integration. Numerical studies, experimental testing, gas turbine integration and interface considerations are evaluated. The aerodynamic stabilization of the miniaturized flamelets and the resulting flow field, flame structure and NOx formation are analysed experimentally and numerically. The results show and confirm the successful adaption of the low NOx Micromix characteristics for a range of different nozzle sizes, energy densities and thermal power output.}, language = {de} } @inproceedings{FunkeKeinzHajAyedetal.2015, author = {Funke, Harald and Keinz, Jan and Haj Ayed, A. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Development and Testing of a Low NOx Micromix Combustion Chamber for an Industrial Gas Turbine}, series = {Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan}, booktitle = {Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan}, isbn = {978-4-89111-008-6}, pages = {131 -- 140}, year = {2015}, language = {en} } @inproceedings{FunkeKeinzBoerneretal.2013, author = {Funke, Harald and Keinz, Jan and B{\"o}rner, Sebastian and Haj Ayed, A. and Kusterer, K. and Tekin, N. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Experimental and numerical characterization of the dry low NOx micromix hydrogen combustion principle at increased energy density for industrial hydrogen gas turbine applications}, series = {Combustion, fuels and emissions : proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition - 2013 ; June 3 - 7, 2013, San Antonio, Texas, USA ; vol. 1}, booktitle = {Combustion, fuels and emissions : proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition - 2013 ; June 3 - 7, 2013, San Antonio, Texas, USA ; vol. 1}, editor = {Song, Seung Jin}, publisher = {ASME}, address = {New York, NY}, organization = {American Society of Mechanical Engineers}, isbn = {978-0-7918-5510-2}, pages = {V001T04A055}, year = {2013}, language = {en} } @inproceedings{FunkeHajAyedKustereretal.2014, author = {Funke, Harald and Haj Ayed, A. and Kusterer, K. and Keinz, Jan and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Numerical Study on Increased Energy Density for the DLN Micromix Hydrogen Combustion Principle}, series = {Combustion, Fuels and Emissions (ASME Turbo Expo 2014: Turbine Technical Conference and Exposition : D{\"u}sseldorf, Germany, June 16-20, 2014 ; Vol. 4A)}, booktitle = {Combustion, Fuels and Emissions (ASME Turbo Expo 2014: Turbine Technical Conference and Exposition : D{\"u}sseldorf, Germany, June 16-20, 2014 ; Vol. 4A)}, publisher = {ASME}, address = {New York, N.Y.}, isbn = {978-0-7918-4568-4}, pages = {V04AT04A057}, year = {2014}, language = {en} } @article{FunkeDickhoffKeinzetal.2014, author = {Funke, Harald and Dickhoff, J. and Keinz, Jan and Anis, H. A. and Parente, A. and Hendrick, P.}, title = {Experimental and numerical study of the micromix combustion principle applied for hydrogen and hydrogen-rich syngas as fuel with increased energy density for industrial gas turbine applications}, series = {Energy procedia}, journal = {Energy procedia}, number = {61}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102 (E-Journal)}, doi = {10.1016/j.egypro.2014.12.201}, pages = {1736 -- 1739}, year = {2014}, abstract = {The Dry Low NOx (DLN) Micromix combustion principle with increased energy density is adapted for the industrial gas turbine APU GTCP 36-300 using hydrogen and hydrogen-rich syngas with a composition of 90\%-Vol. hydrogen (Hâ‚‚) and 10\%-Vol. carbon-monoxide (CO). Experimental and numerical studies of several combustor geometries for hydrogen and syngas show the successful advance of the DLN Micromix combustion from pure hydrogen to hydrogen-rich syngas. The impact of the different fuel properties on the combustion principle and aerodynamic flame stabilization design laws, flow field, flame structure and emission characteristics is investigated by numerical analysis using a hybrid Eddy Break Up combustion model and validated against experimental results.}, language = {en} } @inproceedings{FunkeBoernerKeinzetal.2012, author = {Funke, Harald and B{\"o}rner, Sebastian and Keinz, Jan and Kusterer, K. and Kroninger, D. and Kitajima, J. and Kazari, M. and Horikama, A.}, title = {Numerical and experimental characterization of low NOx Micromix combustion principle for industrial hydrogen gas turbine applications}, series = {Proceedings of ASME Turbo Expo 2012}, booktitle = {Proceedings of ASME Turbo Expo 2012}, pages = {11}, year = {2012}, language = {en} }