@article{AggeloussisGiannakouAlbrachtetal.2010, author = {Aggeloussis, Nickos and Giannakou, Erasmia and Albracht, Kirsten and Arampatzis, Adamantios}, title = {Reproducibility of fascicle length and pennation angle of gastrocnemius medialis in human gait in vivo}, series = {Gait and Posture}, volume = {31}, journal = {Gait and Posture}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2009.08.249}, pages = {73 -- 77}, year = {2010}, abstract = {The purpose of the current study was to examine the reproducibility of fascicle length and pennation angle of gastrocnemius medialis while human walking. To the best of our knowledge, this is the first study of the reproducibility of fascicle length and pennation angle of gastrocnemius medialis in vivo during human gait. Twelve males performed 10 gait trials on a treadmill, in 2 separate days. B-mode ultrasonography, with the ultrasound probe firmly adjusted in the transverse and frontal planes using a special cast, was used to measure the fascicle length and the pennation angle of the gastrocnemius medialis (GM). A Vicon 624 system with three cameras operating at 120 Hz was also used to record the ankle and knee joint angles. The results showed that measurements of fascicle length and pennation angle showed high reproducibility during the gait cycle, both within the same day and between different days. Moreover, the root mean square differences between the repeated waveforms of both variables were very small, compared with their ranges (fascicle length: RMS = ∼3 mm, range: 38-63 mm; pennation angle: RMS = ∼1.5°, range: 22-32°). However, their reproducibility was lower compared to the joint angles. It was found that representative data have to be derived by a wide number of gait trials (fascicle length ∼six trials, pennation angle more than 10 trials), to assure the reliability of the fascicle length and pennation angle in human gait.}, language = {en} } @article{AlbrachtArampatzisBaltzopoulos2008, author = {Albracht, Kirsten and Arampatzis, A. and Baltzopoulos, V.}, title = {Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo}, series = {Journal of Biomechanics}, volume = {41}, journal = {Journal of Biomechanics}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2008.04.020}, pages = {2211 -- 2218}, year = {2008}, language = {en} } @article{AlbrachtArampatzis2013, author = {Albracht, Kirsten and Arampatzis, Adamantios}, title = {Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans}, series = {European Journal of Applied Physiology}, volume = {113}, journal = {European Journal of Applied Physiology}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {1439-6327}, doi = {10.1007/s00421-012-2585-4}, pages = {1605 -- 1615}, year = {2013}, language = {en} } @article{AlbrachtArampatzis2006, author = {Albracht, Kirsten and Arampatzis, Adamantios}, title = {Influence of the mechanical properties of the muscle-tendon unit on force generation in runners with different running economy}, series = {Biological Cybernetics}, volume = {95}, journal = {Biological Cybernetics}, number = {1}, issn = {1432-0770}, doi = {10.1007/s00422-006-0070-z}, pages = {87 -- 96}, year = {2006}, language = {en} } @article{ArampatzisKaramanidisAlbracht2007, author = {Arampatzis, Adamantios and Karamanidis, Kiros and Albracht, Kirsten}, title = {Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude}, series = {Journal of Experimental Biology}, volume = {210}, journal = {Journal of Experimental Biology}, number = {15}, issn = {0022-0949}, doi = {10.1242/jeb.003814}, pages = {2743 -- 2753}, year = {2007}, language = {en} } @article{ArampatzisKaramanidisMademlietal.2009, author = {Arampatzis, Adamantios and Karamanidis, Kiros and Mademli, Lida and Albracht, Kirsten}, title = {Plasticity of the human tendon to short and long-term mechanical loading}, series = {Exercise and Sport Sciences Reviews}, volume = {37}, journal = {Exercise and Sport Sciences Reviews}, number = {2}, issn = {1538-3008}, doi = {10.1097/JES.0b013e31819c2e1d}, pages = {66 -- 72}, year = {2009}, language = {en} } @article{ArampatzisPeperBierbaumetal.2010, author = {Arampatzis, Adamantios and Peper, Andreas and Bierbaum, Stefanie and Albracht, Kirsten}, title = {Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain}, series = {Journal of Biomechanics}, volume = {43}, journal = {Journal of Biomechanics}, number = {16}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2010.08.014}, pages = {3073 -- 3079}, year = {2010}, abstract = {The purpose of the current study in combination with our previous published data (Arampatzis et al., 2007) was to examine the effects of a controlled modulation of strain magnitude and strain frequency applied to the Achilles tendon on the plasticity of tendon mechanical and morphological properties. Eleven male adults (23.9±2.2 yr) participated in the study. The participants exercised one leg at low magnitude tendon strain (2.97±0.47\%), and the other leg at high tendon strain magnitude (4.72±1.08\%) of similar frequency (0.5 Hz, 1 s loading, 1 s relaxation) and exercise volume (integral of the plantar flexion moment over time) for 14 weeks, 4 days per week, 5 sets per session. The exercise volume was similar to the intervention of our earlier study (0.17 Hz frequency; 3 s loading, 3 s relaxation) allowing a direct comparison of the results. Before and after the intervention ankle joint moment has been measured by a dynamometer, tendon-aponeurosis elongation by ultrasound and cross-sectional area of the Achilles tendon by magnet resonance images (MRI). We found a decrease in strain at a given tendon force, an increase in tendon-aponeurosis stiffness and tendon elastic modulus of the Achilles tendon only in the leg exercised at high strain magnitude. The cross-sectional area (CSA) of the Achilles tendon did not show any statistically significant (P>0.05) differences to the pre-exercise values in both legs. The results indicate a superior improvement in tendon properties (stiffness, elastic modulus and CSA) at the low frequency (0.17 Hz) compared to the high strain frequency (0.5 Hz) protocol. These findings provide evidence that the strain magnitude applied to the Achilles tendon should exceed the value, which occurs during habitual activities to trigger adaptational effects and that higher tendon strain duration per contraction leads to superior tendon adaptational responses.}, language = {en} } @article{BelavyAlbrachtBruggemannetal.2016, author = {Belavy, Daniel L. and Albracht, Kirsten and Bruggemann, Gert-Peter and Vergroesen, Pieter-Paul A. and Dieen, Jaap H. van}, title = {Can exercise positively influence the intervertebral disc?}, series = {Sports Medicine}, volume = {46}, journal = {Sports Medicine}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1179-2035}, doi = {10.1007/s40279-015-0444-2}, pages = {473 -- 485}, year = {2016}, abstract = {To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a 'critical period' for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.}, language = {en} } @article{CapriMorsianiSantoroetal.2019, author = {Capri, Miriam and Morsiani, Cristina and Santoro, Aurelia and Moriggi, Manuela and Conte, Maria and Martucci, Morena and Bellavista, Elena and Fabbri, Cristina and Giampieri, Enrico and Albracht, Kirsten and Fl{\"u}ck, Martin and Ruoss, Severin and Brocca, Lorenza and Canepari, Monica and Longa, Emanuela and Giulio, Irene Di and Bottinelli, Roberto and Cerretelli, Paolo and Salvioli, Stefano and Gelfi, Cecilia and Franceschi, Claudio and Narici, Marco and Rittweger, J{\"o}rn}, title = {Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting}, series = {The FASEB journal : official publication of the Federation of American Societies for Experimental Biology}, volume = {33}, journal = {The FASEB journal : official publication of the Federation of American Societies for Experimental Biology}, number = {4}, doi = {10.1096/fj.201801625R}, pages = {5168 -- 5180}, year = {2019}, language = {en} } @article{HeieisBoeckerD'Angeloetal.2023, author = {Heieis, Jule and B{\"o}cker, Jonas and D'Angelo, Olfa and Mittag, Uwe and Albracht, Kirsten and Sch{\"o}nau, Eckhard and Meyer, Andreas and Voigtmann, Thomas and Rittweger, J{\"o}rn}, title = {Curvature of gastrocnemius muscle fascicles as function of muscle-tendon complex length and contraction in humans}, series = {Physiological Reports}, volume = {11}, journal = {Physiological Reports}, number = {11}, publisher = {Wiley}, issn = {2051-817X}, doi = {10.14814/phy2.15739}, pages = {e15739, Seite 1-11}, year = {2023}, abstract = {It has been shown that muscle fascicle curvature increases with increasing contraction level and decreasing muscle-tendon complex length. The analyses were done with limited examination windows concerning contraction level, muscle-tendon complex length, and/or intramuscular position of ultrasound imaging. With this study we aimed to investigate the correlation between fascicle arching and contraction, muscle-tendon complex length and their associated architectural parameters in gastrocnemius muscles to develop hypotheses concerning the fundamental mechanism of fascicle curving. Twelve participants were tested in five different positions (90°/105°*, 90°/90°*, 135°/90°*, 170°/90°*, and 170°/75°*; *knee/ankle angle). They performed isometric contractions at four different contraction levels (5\%, 25\%, 50\%, and 75\% of maximum voluntary contraction) in each position. Panoramic ultrasound images of gastrocnemius muscles were collected at rest and during constant contraction. Aponeuroses and fascicles were tracked in all ultrasound images and the parameters fascicle curvature, muscle-tendon complex strain, contraction level, pennation angle, fascicle length, fascicle strain, intramuscular position, sex and age group were analyzed by linear mixed effect models. Mean fascicle curvature of the medial gastrocnemius increased with contraction level (+5 m-1 from 0\% to 100\%; p = 0.006). Muscle-tendon complex length had no significant impact on mean fascicle curvature. Mean pennation angle (2.2 m-1 per 10°; p < 0.001), inverse mean fascicle length (20 m-1 per cm-1; p = 0.003), and mean fascicle strain (-0.07 m-1 per +10\%; p = 0.004) correlated with mean fascicle curvature. Evidence has also been found for intermuscular, intramuscular, and sex-specific intramuscular differences of fascicle curving. Pennation angle and the inverse fascicle length show the highest predictive capacities for fascicle curving. Due to the strong correlations between pennation angle and fascicle curvature and the intramuscular pattern of curving we suggest for future studies to examine correlations between fascicle curvature and intramuscular fluid pressure.}, language = {en} }