@article{OrzadaSolbachGratzetal.2019, author = {Orzada, Stephan and Solbach, Klaus and Gratz, Marcel and Brunheim, Sascha and Fiedler, Thomas M. and Johst, S{\"o}ren and Bitz, Andreas and Shooshtary, Samaneh and Abuelhaija, Asjraf and Voelker, Maximilian N. and Rietsch, Stefan H. G. and Kraff, Oliver and Maderwald, Stefan and Fl{\"o}ser, Martina and Oehmingen, Mark and Quick, Harald H. and Ladd, Mark E.}, title = {A 32-channel parallel transmit system add-on for 7T MRI}, series = {Plos one}, journal = {Plos one}, doi = {10.1371/journal.pone.0222452}, year = {2019}, language = {en} } @article{OrzadaBitzJohstetal.2017, author = {Orzada, Stephan and Bitz, Andreas and Johst, S{\"o}ren and Gratz, Marcel and V{\"o}lker, Maximilian N. and Kraff, Oliver and Abuelhaija, Ashraf and Fiedler, Thomas M. and Solbach, Klaus and Quick, Harald H. and Ladd, Mark E.}, title = {Analysis of an integrated 8-Channel Tx/Rx body array for use as a body coil in 7-Tesla MRI}, series = {Frontiers in Physics}, volume = {5}, journal = {Frontiers in Physics}, number = {Jun}, issn = {2296-424X}, doi = {10.3389/fphy.2017.00017}, year = {2017}, language = {en} } @article{SchmidtForkmannSinkeetal.2016, author = {Schmidt, K. and Forkmann, K. and Sinke, C. and Gratz, M. and Bitz, Andreas and Bingel, U.}, title = {The differential effect of trigeminal vs. peripheral pain stimulation on visual processing and memory encoding is influenced by pain-related fear}, series = {NeuroImage}, volume = {134}, journal = {NeuroImage}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2016.03.026}, pages = {386 -- 395}, year = {2016}, abstract = {Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance.}, language = {en} }