@inproceedings{MarkinkovicButenwegPaveseetal.2020, author = {Markinkovic, Marko and Butenweg, Christoph and Pavese, A. and Lanese, I. and Hoffmeister, B. and Pinkawa, M. and Vulcu, C. and Bursi, O. and Nardin, C. and Paolacci, F. and Quinci, G. and Fragiadakis, M. and Weber, F. and Huber, P. and Renault, P. and G{\"u}ndel, M. and Dyke, S. and Ciucci, M. and Marino, A.}, title = {Investigation of the seismic behaviour of structural and nonstructural components in industrial facilities by means of shaking table tests}, series = {Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference)}, booktitle = {Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference)}, isbn = {978-3-86359-729-0}, pages = {159 -- 172}, year = {2020}, language = {en} } @article{KhodaverdiWeberStreunetal.2006, author = {Khodaverdi, M. and Weber, S. and Streun, M. and Parl, C. and Ziemons, Karl}, title = {High resolution imaging with ClearPET™ Neuro - first animal images}, series = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, journal = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, isbn = {1082-3654}, pages = {1641 -- 1644}, year = {2006}, abstract = {The ClearPET™ Neuro is the first full ring scanner within the Crystal Clear Collaboration (CCC). It consists of 80 detector modules allocated to 20 cassettes. LSO and LuYAP:Ce crystals in phoswich configuration in combination with position sensitive photomultiplier tubes are used to achieve high sensitivity and realize the acquisition of the depth of interaction (DOI) information. The complete system has been tested concerning the mechanical and electronical stability and interplay. Moreover, suitable corrections have been implemented into the reconstruction procedure to ensure high image quality. We present first results which show the successful operation of the ClearPET™ Neuro for artefact free and high resolution small animal imaging. Based on these results during the past few months the ClearPET™ Neuro System has been modified in order to optimize the performance.}, language = {en} } @article{MurganBeyerKotliaretal.2013, author = {Murgan, Ilina and Beyer, Sonja and Kotliar, Konstantin and Weber, Lutz and Bechtold-Dalla Pozza, Susanne and Dalla Pozza, Robert and Wegner, Aharon and Sitnikova, Diana and Stock, Konrad and Heemann, Uwe and Schmaderer, Christoph and Baumann, M.}, title = {Arterial and Retinal Vascular Changes in Hypertensive and Prehypertensive Adolescents}, series = {American Journal of Hypertension}, volume = {26}, journal = {American Journal of Hypertension}, number = {3}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1941-7225}, pages = {400 -- 408}, year = {2013}, language = {de} } @article{WahleWeber2002, author = {Wahle, Michael and Weber, M.}, title = {Simulationsmodell zur Darstellung der Eigenschaften von Fahrzeug-Stoßd{\"a}mpfern bei beliebiger dynamischer Belastung, Simulationsmodell f{\"u}r Stoßd{\"a}mpfer}, year = {2002}, language = {de} } @article{WahleWeber2001, author = {Wahle, Michael and Weber, M.}, title = {Zum Stand von Komponentenmodellen im Rahmen der Fahrzeugsimulation}, year = {2001}, language = {de} } @article{KaminskyDumontWeberetal.2007, author = {Kaminsky, Radoslav and Dumont, K. and Weber, Hans-Joachim and Schroll, M. and Verdonck, P.}, title = {PIV validation of blood-heart valve leaflet interaction modelling}, series = {The International journal of artificial organs. 30 (2007), H. 7}, journal = {The International journal of artificial organs. 30 (2007), H. 7}, publisher = {-}, pages = {640 -- 648}, year = {2007}, language = {en} } @article{HekmatSaleminkLauterbachetal.2004, author = {Hekmat, Khosro and Salemink, B. and Lauterbach, Gerhard and Schwinger, R. H. G. and S{\"u}dkamp, M. and Weber, Hans-Joachim and Mehlhorn, U.}, title = {Interference by cellular phones with permanent implanted pacemakers: an update}, series = {Europace. 6 (2004), H. 4}, journal = {Europace. 6 (2004), H. 4}, pages = {363 -- 369}, year = {2004}, language = {en} } @article{KallweitKisifeUtzenradetal.2008, author = {Kallweit, Stephan and Kisife, F. and Utzenrad, M. and Weber, J.}, title = {Hispeed Scanning Stereo PIV hinter einer k{\"u}nstlichen Herzklappe / Kallweit, S. ; Kisife, F. ; Utzenrad, M. ; Weber, J.}, series = {Lasermethoden in der Str{\"o}mungsmesstechnik : 16. Fachtagung, 9. - 11. September 2008, Karlsruhe / veranst. von der Deutschen Gesellschaft f{\"u}r Laser-Anemometrie GALA e.V. Hrsg.: B. Ruck}, journal = {Lasermethoden in der Str{\"o}mungsmesstechnik : 16. Fachtagung, 9. - 11. September 2008, Karlsruhe / veranst. von der Deutschen Gesellschaft f{\"u}r Laser-Anemometrie GALA e.V. Hrsg.: B. Ruck}, publisher = {GALA e.V.}, address = {Karlsruhe}, isbn = {978-3-9805613-4-1}, pages = {29}, year = {2008}, language = {de} } @article{KhodaverdiChatziioannouWeberetal.2005, author = {Khodaverdi, M. and Chatziioannou, A. F. and Weber, S. and Ziemons, Karl and Halling, H. and Pietrzyk, U.}, title = {Investigation of different MicroCT scanner configurations by GEANT4 simulations}, series = {IEEE Transactions on Nuclear Science}, volume = {52}, journal = {IEEE Transactions on Nuclear Science}, number = {1}, isbn = {0018-9499}, pages = {188 -- 192}, year = {2005}, abstract = {This study has been performed to design the combination of the new ClearPET (ClearPET is a trademark of the Crystal Clear Collaboration), a small animal positron emission tomography (PET) system, with a micro-computed tomography (microCT) scanner. The properties of different microCT systems have been determined by simulations based on GEANT4. We will demonstrate the influence of the detector material and the X-ray spectrum on the obtained contrast. Four different detector materials (selenium, cadmium zinc telluride, cesium iodide and gadolinium oxysulfide) and two X-ray spectra (a molybdenum and a tungsten source) have been considered. The spectra have also been modified by aluminum filters of varying thickness. The contrast between different tissue types (water, air, brain, bone and fat) has been simulated by using a suitable phantom. The results indicate the possibility to improve the image contrast in microCT by an optimized combination of the X-ray source and detector material.}, language = {en} } @article{KhodaverdiChaziioannouWeberetal.2004, author = {Khodaverdi, M. and Chaziioannou, A. F. and Weber, S. and Ziemons, Karl and Halling, H. and Pietrzyk, U.}, title = {Investigation of different microCT scanner configurations by GEANT4 simulations}, series = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, journal = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, issn = {1082-3654}, pages = {2989 -- 2993}, year = {2004}, abstract = {This study has been performed to design the combination of the new ClearPET TM (ClearPET is a trademark of the Crystal Clear Collaboration), a small animal Positron Emission Tomography (PET) system, with a microComputed Tomography (microCT) scanner. The properties of different microCT systems have been determined by simulations based on GEANT4. We demonstrate the influence of the detector material and the X-ray spectrum on the obtained contrast. Four different detector materials (selenium, cadmium zinc telluride, cesium iodide and gadolinium oxysulfide) and two X-ray spectra (a molybdenum and a tungsten source) have been considered. The spectra have also been modified by aluminum filters of varying thickness. The contrast between different tissue types (water, air, brain, bone and fat) has been simulated by using a suitable phantom. The results indicate the possibility to improve the image contrast in microCT by an optimized combination of the X-ray source and detector material.}, language = {en} }