@inproceedings{GoemmelKobNiendorfetal.2009, author = {G{\"o}mmel, Andreas and Kob, Malte and Niendorf, Thoralf and Butenweg, Christoph}, title = {An approach for numerical calculation of glottal flow during glottal closure}, series = {Proceedings / NAG/DAGA 2009, International Conference on Acoustics : Rotterdam, 23 - 26 March 2009 ; [including the 35th German Annual Conference on Acoustics (DAGA)] / [organisers: Acoustical Society of the Netherlands (NAG); German Acoustical Society (DEGA) ...]. Ed. by Marinus M. Boone}, booktitle = {Proceedings / NAG/DAGA 2009, International Conference on Acoustics : Rotterdam, 23 - 26 March 2009 ; [including the 35th German Annual Conference on Acoustics (DAGA)] / [organisers: Acoustical Society of the Netherlands (NAG); German Acoustical Society (DEGA) ...]. Ed. by Marinus M. Boone}, publisher = {DEGA}, address = {Berlin}, organization = {NAG DAGA <2009, Rotterdam>}, isbn = {978-3-9808659-6-8}, pages = {1722 -- 1725}, year = {2009}, language = {en} } @inproceedings{GoemmelNiendorfFrauenrathetal.2010, author = {G{\"o}mmel, Andreas and Niendorf, Thoralf and Frauenrath, Tobias and Otten, Mario and Butenweg, Christoph and Kob, Malte}, title = {3D vocal fold geometry mapping using Magnetic Resonance Imaging}, series = {Fortschritte der Akustik : 36. Deutsche Jahrestagung f{\"u}r Akustik, Band 1}, booktitle = {Fortschritte der Akustik : 36. Deutsche Jahrestagung f{\"u}r Akustik, Band 1}, publisher = {Deutsche Gesellschaft f{\"u}r Akustik}, address = {Berlin}, organization = {Deutsche Jahrestagung f{\"u}r Akustik <36, 2010, Berlin>}, isbn = {978-3-9808659-8-2}, pages = {271 -- 272}, year = {2010}, language = {en} } @inproceedings{GoemmelButenwegKob2005, author = {G{\"o}mmel, Andreas and Butenweg, Christoph and Kob, Malte}, title = {Towards a complete finite-element model of human phonation: modeling phonatory maneuvers}, series = {12th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields : Ulm, Germany, 20 - 21 July 2005 / University of Ulm, Department of Orthodontics ...}, booktitle = {12th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields : Ulm, Germany, 20 - 21 July 2005 / University of Ulm, Department of Orthodontics ...}, publisher = {Univ., Dep. of Orthodontics}, address = {Ulm}, organization = {Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields <12, 2005, Ulm>}, isbn = {978-3-9806183-8-0}, pages = {1 CD-ROM}, year = {2005}, language = {en} } @inproceedings{KobGoemmelButenwegetal.2006, author = {Kob, Malte and G{\"o}mmel, Andreas and Butenweg, Christoph and Niendorf, Thoralf}, title = {Training of a combined model of larynx and vocal folds with data from MRI measurements}, series = {The 5th International Conference on Voice Physiology and Biomechanics: Variations across Cultures and Species, July 12-14, 2006, Tokyo, Japan. Proceedings}, booktitle = {The 5th International Conference on Voice Physiology and Biomechanics: Variations across Cultures and Species, July 12-14, 2006, Tokyo, Japan. Proceedings}, organization = {International Conference on Voice Physiology and Biomechanics <5, 2006, Tokyo>}, pages = {45 -- 46}, year = {2006}, language = {en} } @inproceedings{KobButenweg2004, author = {Kob, Malte and Butenweg, Christoph}, title = {A finite element model of the interaction between intra-and extralaryngeal muscles}, series = {International Conference on Voice Physiology and Biomechanics, August 18-20, 2004, Marseille, France}, booktitle = {International Conference on Voice Physiology and Biomechanics, August 18-20, 2004, Marseille, France}, organization = {International Conference on Voice Physiology and Biomechanics <2004, Marseille>}, pages = {1 -- 2}, year = {2004}, language = {en} } @inproceedings{GoemmelKraemerButenwegetal.2005, author = {G{\"o}mmel, Andreas and Kr{\"a}mer, Sebastian and Butenweg, Christoph and Kob, Malte}, title = {A combined FE and multiple-mass model for numerical simulation of phonatory maneuvers}, series = {Proceedings / Forum Acusticum, Budapest, 29 Aug - 2 Sep, 2005 : [Acoustics: science and technology for knowledge based society and healthy environment] / ed. by: F{\"u}l{\"o}p Augusztinovicz ...}, booktitle = {Proceedings / Forum Acusticum, Budapest, 29 Aug - 2 Sep, 2005 : [Acoustics: science and technology for knowledge based society and healthy environment] / ed. by: F{\"u}l{\"o}p Augusztinovicz ...}, publisher = {OPAKFI Tud. Egyes{\"u}let}, address = {Budapest}, organization = {Forum Acusticum <4, 2005, Budapest>}, isbn = {978-963-8241-68-9}, pages = {2759 -- 2764}, year = {2005}, language = {en} } @article{FrauenrathHezelHeinrichsetal.2009, author = {Frauenrath, Tobias and Hezel, Fabian and Heinrichs, Uwe and Kozerke, Sebastian and Utting, Jane and Kob, Malte and Butenweg, Christoph and Boesiger, Peter and Niendorf, Thoralf}, title = {Feasibility of Cardiac Gating Free of Interference With Electro-Magnetic Fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla Using an MR-Stethoscope}, series = {Investigative Radiology}, volume = {44}, journal = {Investigative Radiology}, number = {9}, publisher = {Lippincott Williams \& Wilkins ; (via Ovid)}, address = {Philadelphia, Pa}, issn = {1536-0210 (online)}, doi = {10.1097/RLI.0b013e3181b4c15e}, pages = {539 -- 547}, year = {2009}, language = {en} } @article{KobFrauenrath2009, author = {Kob, Malte and Frauenrath, Tobias}, title = {A system for parallel measurement of glottis opening and larynx position}, series = {Biomedical Signal Processing and Control}, volume = {4}, journal = {Biomedical Signal Processing and Control}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1746-8108}, doi = {10.1016/j.bspc.2009.03.004}, pages = {221 -- 228}, year = {2009}, abstract = {The simultaneous assessment of glottal dynamics and larynx position can be beneficial for the diagnosis of disordered voice or speech production and swallowing. Up to now, methods either concentrate on assessment of the glottis opening using optical, acoustical or electrical (electroglottography, EGG) methods, or on visualisation of the larynx position using ultrasound, computer tomography or magnetic resonance imaging techniques. The method presented here makes use of a time-multiplex measurement approach of space-resolved transfer impedances through the larynx. The fast sequence of measurements allows a quasi simultaneous assessment of both larynx position and EGG signal using up to 32 transmit-receive signal paths. The system assesses the dynamic opening status of the glottis as well as the vertical and back/forward motion of the larynx. Two electrode-arrays are used for the measurement of the electrical transfer impedance through the neck in different directions. From the acquired data the global and individual conductivity is calculated as well as a 2D point spatial representation of the minimum impedance. The position information is shown together with classical EGG signals allowing a synchronous visual assessment of glottal area and larynx position. A first application to singing voice analysis is presented that indicate a high potential of the method for use as a non-invasive tool in the diagnosis of voice, speech, and swallowing disorders.}, language = {en} } @article{FrauenrathNiendorfKob2008, author = {Frauenrath, Tobias and Niendorf, Thoralf and Kob, Malte}, title = {Acoustic method for synchronization of Magnetic Resonance Imaging (MRI)}, series = {Acta Acustica}, volume = {94}, journal = {Acta Acustica}, number = {1}, publisher = {Hirzel}, address = {Stuttgart}, issn = {1861-9959}, doi = {10.3813/AAA.918017}, pages = {148 -- 155}, year = {2008}, abstract = {Magnetic Resonance Imaging (MRI) of moving organs requires synchronization with physiological motion or flow, which dictate the viable window for data acquisition. To meet this challenge, this study proposes an acoustic gating device (ACG) that employs acquisition and processing of acoustic signals for synchronization while providing MRI compatibility, immunity to interferences with electro-magnetic and acoustic fields and suitability for MRI at high magnetic field strengths. The applicability and robustness of the acoustic gating approach is examined in a pilot study, where it substitutes conventional ECG-gating for cardiovascular MR. The merits and limitations of the ACG approach are discussed. Implications for MR imaging in the presence of physiological motion are considered including synchronization with other structure- or motion borne sounds.}, language = {en} }