@article{SchwabHojdisLacayoetal.2016, author = {Schwab, Lukas and Hojdis, Nils and Lacayo, Jorge and Wilhelm, Manfred}, title = {Fourier-Transform Rheology of Unvulcanized, Carbon Black Filled Styrene Butadiene Rubber}, series = {Macromolecular Materials and Engineering}, volume = {301}, journal = {Macromolecular Materials and Engineering}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-2054}, doi = {10.1002/mame.201500356}, pages = {457 -- 468}, year = {2016}, abstract = {Rubber materials filled with reinforcing fillers display nonlinear rheological behavior at small strain amplitudes below γ0 < 0.1. Nevertheless, rheological data are analyzed mostly in terms of linear parameters, such as shear moduli (G′, G″), which loose their physical meaning in the nonlinear regime. In this work styrene butadiene rubber filled with carbon black (CB) under large amplitude oscillatory shear (LAOS) is analyzed in terms of the nonlinear parameter I3/1. Three different CB grades are used and the filler load is varied between 0 and 70 phr. It is found that I3/1(φ) is most sensitive to changes of the total accessible filler surface area at low strain amplitudes (γ0 = 0.32). The addition of up to 70 phr CB leads to an increase of I3/1(φ) by a factor of more than ten. The influence of the measurement temperature on I3/1 is pronounced for CB levels above the percolation threshold.}, language = {en} }