@inproceedings{Behbahani2014, author = {Behbahani, Mehdi}, title = {An Experimental Study of Thrombocyte Reactions in Response to Biomaterial Surfaces and Varying Shear Stress}, series = {Proceedings of the International Conference on Biomedical Engineering and Systems Prague, Czech Republic, August 14-15, 2014}, booktitle = {Proceedings of the International Conference on Biomedical Engineering and Systems Prague, Czech Republic, August 14-15, 2014}, pages = {Paper 125}, year = {2014}, language = {en} } @phdthesis{Behbahani2011, author = {Behbahani, Mehdi}, title = {Modeling and Simulation of Shear-Dependent Platelet Reactions in Blood Vessels and Blood-Contacting Medical Devices}, publisher = {Verlag Dr. Hut}, address = {M{\"u}nchen}, isbn = {978-3-8439-0134-5}, year = {2011}, language = {en} } @article{BehbahaniBehrAroraetal.2006, author = {Behbahani, Mehdi and Behr, M. and Arora, D. and Coronado, O. and Pasquali, M.}, title = {CFD Analysis of MicroMed Debakey Pump and Hemolysis Prediction / Behbahani, M. ; Behr, M. ; Arora, D. ; Coronado, O. ; Pasquali, M.}, series = {Artificial Organs. 30 (2006), H. 11}, journal = {Artificial Organs. 30 (2006), H. 11}, isbn = {1525-1594}, pages = {A45 -- A46}, year = {2006}, language = {en} } @article{BehbahaniBehrHormesetal.2009, author = {Behbahani, Mehdi and Behr, M. and Hormes, M. and Steinseifer, U. and Arora, D. and Coronado, O. and Pasquali, M.}, title = {A Review of Computational Fluid Dynamics Analysis of Blood Pumps}, series = {European Journal of Applied Mathematics. 20 (2009), H. 4}, journal = {European Journal of Applied Mathematics. 20 (2009), H. 4}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, pages = {363 -- 397}, year = {2009}, language = {en} } @article{BehbahaniBehrNicolaietal.2008, author = {Behbahani, Mehdi and Behr, Marek and Nicolai, Mike and Probst, Markus}, title = {Towards Shape Optimization for Ventricular Assist Devices Using Parallel Stabilized FEM}, series = {NIC Symposium 2008 : symposium, 20 - 21 February 2008, Forschungszentrum J{\"u}lich ; proceedings / organized by John von Neumann Institute for Computing. Ed. by Gernot M{\"u}nster; Dietrich Wolf; Manfred Kremer (ed.)}, journal = {NIC Symposium 2008 : symposium, 20 - 21 February 2008, Forschungszentrum J{\"u}lich ; proceedings / organized by John von Neumann Institute for Computing. Ed. by Gernot M{\"u}nster; Dietrich Wolf; Manfred Kremer (ed.)}, publisher = {Forschungszentrum}, address = {J{\"u}lich}, isbn = {978-3-9810843-5-1}, pages = {325 -- 332}, year = {2008}, language = {en} } @article{BehbahaniFinocchiaroHeinkeetal.2009, author = {Behbahani, Mehdi and Finocchiaro, Thomas and Heinke, Stefanie and Leßmann, Marc}, title = {Methods of design, simulation, and control for the development of new VAD/TAH concepts = Methoden zur Konstruktion, Simulation und Regelung f{\"u}r die Entwicklung von neuen VAD/TAH-Konzepten / Finocchiaro, Thomas ; Heinke, Stefanie ; Behbahani, Mehdi ; Leßma}, series = {Biomedizinische Technik / Biomedical Engineering. 54 (2009), H. 5}, journal = {Biomedizinische Technik / Biomedical Engineering. 54 (2009), H. 5}, isbn = {0013-5585}, pages = {269 -- 281}, year = {2009}, language = {en} } @article{BehbahaniMaiBergmannetal.2010, author = {Behbahani, Mehdi and Mai, A. and Bergmann, B. and Waluga, C. and Behr, M. and Tran, L. and Vonderstein, K. and Mottaghy, K.}, title = {Modeling and Numerical Simulation of Blood Damage}, year = {2010}, language = {en} } @article{BehbahaniMaiWalugaetal.2010, author = {Behbahani, Mehdi and Mai, A. and Waluga, C. and Bergmann, B. and Tran, L. and Vonderstein, K. and Behr, M. and Mottaghy, K.}, title = {Numerical Modeling of Flow-Related Thrombus Formation under Physiological and Non-Physiological Flow Conditions}, series = {Acta Physiologica}, volume = {198}, journal = {Acta Physiologica}, number = {Supplement 677}, isbn = {1748-1716}, pages = {185}, year = {2010}, language = {en} } @article{BehbahaniNamWalugaetal.2010, author = {Behbahani, Mehdi and Nam, J. and Waluga, C. and Behr, M. and Pasquali, M. and Mottaghy, K.}, title = {Modeling and Numerical Analysis of Platelet Activation, Adhesion and Aggregation in Artificial Organs}, doi = {10.1097/01.mat.0000369377.65122.a3}, year = {2010}, language = {en} } @article{BehbahaniNicolaiProbstetal.2007, author = {Behbahani, Mehdi and Nicolai, M. and Probst, M. and Behr, M.}, title = {Simulation of Blood Flow in a Ventricular Assist Device}, series = {inSIDE. 5 (2007), H. 1}, journal = {inSIDE. 5 (2007), H. 1}, pages = {28 -- 31}, year = {2007}, language = {en} } @article{BehbahaniProbstMaietal.2010, author = {Behbahani, Mehdi and Probst, M. and Mai, A. and Behr, M. and Tran, L. and Vonderstein, K. and Mottaghy, K.}, title = {Numerical Prediction of Blood Damage in Biomedical Devices}, year = {2010}, language = {en} } @article{BehbahaniProbstMaietal.2010, author = {Behbahani, Mehdi and Probst, M. and Mai, A. and Tran, L. and Vonderstein, K. and Keschenau, P. and Linde, T. and Steinseifer, U. and Behr, M. and Mottaghy, K.}, title = {The influence of high shear on thrombosis and hemolysis in artificial organs}, series = {Artificial Organs}, volume = {33}, journal = {Artificial Organs}, number = {7}, isbn = {0391-3988}, pages = {426 -- 426}, year = {2010}, language = {en} } @inproceedings{BehbahaniRibleMoulinecetal.2015, author = {Behbahani, Mehdi and Rible, Sebastian and Moulinec, Charles and Fournier, Yvan and Nicolai, Mike and Crosetto, Paolo}, title = {Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing}, series = {World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering}, volume = {9}, booktitle = {World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering}, number = {5}, year = {2015}, language = {en} } @article{BehbahaniTranJockenhoeveletal.2011, author = {Behbahani, Mehdi and Tran, L. and Jockenh{\"o}vel, S. and Behr, M. and Mottaghy, K.}, title = {Numerical prediction of thrombocyte reactions for application to a vascular flow model}, series = {British Journal of Surgery}, volume = {98}, journal = {British Journal of Surgery}, number = {S5}, publisher = {Oxford University Press}, address = {Oxford}, isbn = {1365-2168}, pages = {S17}, year = {2011}, language = {en} } @article{BehbahaniTranWalugaetal.2009, author = {Behbahani, Mehdi and Tran, L. and Waluga, C. and Behr, M. and Oedekoven, B. and Mottaghy, K.}, title = {Model-based Numerical Analysis of Platelet Adhesion, Thrombus Growth and Aggregation for Assist Devices}, series = {The International Journal of Artificial Organs. 32 (2009), H. 7}, journal = {The International Journal of Artificial Organs. 32 (2009), H. 7}, isbn = {0391-3988}, pages = {398 -- 398}, year = {2009}, language = {en} } @article{BehbahaniWalugaArltetal.2008, author = {Behbahani, Mehdi and Waluga, C. and Arlt, S. and Behr, M. and Mottaghy, K.}, title = {Computational Analysis of Platelet Aggregation in a Taylor-Couette System}, series = {The International Journal of Artificial Organs. 31 (2008), H. 7}, journal = {The International Journal of Artificial Organs. 31 (2008), H. 7}, isbn = {0391-3988}, pages = {643}, year = {2008}, language = {en} } @article{BehbahaniWalugaStocketal.2009, author = {Behbahani, Mehdi and Waluga, C. and Stock, S. and Mai, A. and Bergmann, B. and Behr, M. and Tran, L. and Vonderstein, K. and Scheidt, H. and Oedekoven, B. and Mottaghy, K.}, title = {Modelling and Numerical Analysis of Platelet Reactions and Surface Thrombus Growth}, year = {2009}, language = {en} } @article{BrockhausBehbahaniMurisetal.2021, author = {Brockhaus, Moritz K. and Behbahani, Mehdi and Muris, Farina and Jansen, Sebastian V. and Schmitz- Rode, Thomas and Steinseifer, Ulrich and Clauser, Johanna C.}, title = {In vitro thrombogenicity testing of pulsatile mechanical circulatory support systems: Design and proof-of-concept}, series = {Artificial Organs}, volume = {45}, journal = {Artificial Organs}, number = {12}, publisher = {Wiley}, address = {Weinheim}, issn = {1525-1594}, doi = {10.1111/aor.14046}, pages = {1513 -- 1521}, year = {2021}, abstract = {Thrombogenic complications are a main issue in mechanical circulatory support (MCS). There is no validated in vitro method available to quantitatively assess the thrombogenic performance of pulsatile MCS devices under realistic hemodynamic conditions. The aim of this study is to propose a method to evaluate the thrombogenic potential of new designs without the use of complex in-vivo trials. This study presents a novel in vitro method for reproducible thrombogenicity testing of pulsatile MCS systems using low molecular weight heparinized porcine blood. Blood parameters are continuously measured with full blood thromboelastometry (ROTEM; EXTEM, FIBTEM and a custom-made analysis HEPNATEM). Thrombus formation is optically observed after four hours of testing. The results of three experiments are presented each with two parallel loops. The area of thrombus formation inside the MCS device was reproducible. The implantation of a filter inside the loop catches embolizing thrombi without a measurable increase of platelet activation, allowing conclusions of the place of origin of thrombi inside the device. EXTEM and FIBTEM parameters such as clotting velocity (α) and maximum clot firmness (MCF) show a total decrease by around 6\% with a characteristic kink after 180 minutes. HEPNATEM α and MCF rise within the first 180 minutes indicate a continuously increasing activation level of coagulation. After 180 minutes, the consumption of clotting factors prevails, resulting in a decrease of α and MCF. With the designed mock loop and the presented protocol we are able to identify thrombogenic hot spots inside a pulsatile pump and characterize their thrombogenic potential.}, language = {en} } @article{ChloeMalyaranCraveiroetal.2022, author = {Chlo{\´e}, Radermacher and Malyaran, Hanna and Craveiro, Rogerio Bastos and Peglow, Sarah and Behbahani, Mehdi and Pufe, Thomas and Wolf, Michael and Neuss, Sabine}, title = {Mechanical loading on cementoblasts: a mini review}, series = {Osteologie}, volume = {31}, journal = {Osteologie}, number = {2}, publisher = {Thieme}, address = {Stuttgart}, issn = {1019-1291}, doi = {10.1055/a-1826-0777}, pages = {111 -- 118}, year = {2022}, abstract = {Orthodontic treatments are concomitant with mechanical forces and thereby cause teeth movements. The applied forces are transmitted to the tooth root and the periodontal ligaments which is compressed on one side and tensed up on the other side. Indeed, strong forces can lead to tooth root resorption and the crown-to-tooth ratio is reduced with the potential for significant clinical impact. The cementum, which covers the tooth root, is a thin mineralized tissue of the periodontium that connects the periodontal ligament with the tooth and is build up by cementoblasts. The impact of tension and compression on these cells is investigated in several in vivo and in vitro studies demonstrating differences in protein expression and signaling pathways. In summary, osteogenic marker changes indicate that cyclic tensile forces support whereas static tension inhibits cementogenesis. Furthermore, cementogenesis experiences the same protein expression changes in static conditions as static tension, but cyclic compression leads to the exact opposite of cyclic tension. Consistent with marker expression changes, the singaling pathways of Wnt/ß-catenin and RANKL/OPG show that tissue compression leads to cementum degradation and tension forces to cementogenesis. However, the cementum, and in particular its cementoblasts, remain a research area which should be explored in more detail to understand the underlying mechanism of bone resorption and remodeling after orthodontic treatments.}, language = {en} } @article{DoorschodtSchreinemachersBehbahanietal.2011, author = {Doorschodt, B. M. and Schreinemachers, M. C. J. M. and Behbahani, Mehdi and Florquin, S. and Weis, J. and Staat, Manfred and Tolba, R. H.}, title = {Hypothermic machine perfusion of kidney grafts: which pressure is preferred}, series = {Annals of Biomedical Engineering. 39 (2011), H. 3}, journal = {Annals of Biomedical Engineering. 39 (2011), H. 3}, publisher = {Springer}, address = {Berlin}, isbn = {1573-9686}, pages = {1051 -- 1059}, year = {2011}, language = {en} }