@article{WernerKrumbeSchumacheretal.2011, author = {Werner, Frederik and Krumbe, Christoph and Schumacher, Katharina and Groebel, Simone and Spelthahn, Heiko and Stellberg, Michael and Wagner, Torsten and Yoshinobu, Tatsuo and Selmer, Thorsten and Keusgen, Michael and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1340 -- 1344}, year = {2011}, language = {en} } @article{WagnerMarisAckermannetal.2007, author = {Wagner, Torsten and Maris, Rob J. and Ackermann, Hans-Josef and Otto, Ralph and Beging, Stefan and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Handheld measurement device for field-effect sensor structures: Practical evaluation and limitations}, series = {Sensors and Actuators B: Chemical . 127 (2007), H. 1}, journal = {Sensors and Actuators B: Chemical . 127 (2007), H. 1}, isbn = {0925-4005}, pages = {217 -- 223}, year = {2007}, language = {en} } @article{WagnerWernerMiyamotoetal.2010, author = {Wagner, Torsten and Werner, Frederik and Miyamoto, Ko-ichiro and Ackermann, Hans-Josef and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {FPGA-based LAPS device for the flexible design of sensing sites on functional interfaces}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {844 -- 849}, year = {2010}, language = {en} } @article{KeusgenJuengerKrestetal.2003, author = {Keusgen, Michael and J{\"u}nger, Martina and Krest, Ingo and Sch{\"o}ning, Michael Josef}, title = {Biosensoric detection of the cysteine sulphoxide alliin}, series = {Sensors and Actuators B. 95 (2003), H. 1-3}, journal = {Sensors and Actuators B. 95 (2003), H. 1-3}, isbn = {0925-4005}, pages = {297 -- 302}, year = {2003}, language = {en} } @article{ThustMulchandaniWangetal.2003, author = {Thust, Marion and Mulchandani, Ashok and Wang, Joseph and Arzdorf, Michael and Mulchandani, Priti and Chen, Wilfried and Sch{\"o}ning, Michael Josef}, title = {Feldeffekt-Enzymsensor zur Detektion von Pestiziden}, series = {Technisches Messen. 70 (2003), H. 12}, journal = {Technisches Messen. 70 (2003), H. 12}, isbn = {0171-8096}, pages = {561 -- 564}, year = {2003}, language = {de} } @article{KirchnerOberlaenderFriedrichetal.2011, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Friedrich, Peter and Berger, J{\"o}rg and Suso, Henri-Pierre and Kupyna, Andriy and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Optimisation and fabrication of a calorimetric gas sensor built up on a polyimide substrate for H2O2 monitoring}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1235 -- 1240}, year = {2011}, language = {en} } @article{KirchnerOberlaenderFriedrichetal.2012, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Friedrich, Peter and Berger, J{\"o}rg and Rysstad, Gunnar and Sch{\"o}ning, Michael Josef and Keusgen, Michael}, title = {Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry}, series = {Sensors and Actuators B: Chemical}, volume = {170}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2011.01.032}, pages = {60 -- 66}, year = {2012}, abstract = {A calorimetric gas sensor is presented for the monitoring of vapour-phase H2O2 at elevated temperature during sterilisation processes in aseptic food industry. The sensor was built up on a flexible polyimide foil (thickness: 25 μm) that has been chosen due to its thermal stability and low thermal conductivity. The sensor set-up consists of two temperature-sensitive platinum thin-film resistances passivated by a layer of SU-8 photo resist and catalytically activated by manganese(IV) oxide. Instead of an active heating structure, the calorimetric sensor utilises the elevated temperature of the evaporated H2O2 aerosol. In an experimental test rig, the sensor has shown a sensitivity of 4.78 °C/(\%, v/v) in a H2O2 concentration range of 0\%, v/v to 8\%, v/v. Furthermore, the sensor possesses the same, unchanged sensor signal even at varied medium temperatures between 210 °C and 270 °C of the gas stream. At flow rates of the gas stream from 8 m3/h to 12 m3/h, the sensor has shown only a slightly reduced sensitivity at a low flow rate of 8 m3/h. The sensor characterisation demonstrates the suitability of the calorimetric gas sensor for monitoring the efficiency of industrial sterilisation processes.}, language = {en} } @article{KirchnerOberlaenderSusoetal.2013, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Suso, Henri-Pierre and Rysstad, Gunnar and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes}, series = {Physica status solidi (a)}, volume = {210}, journal = {Physica status solidi (a)}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201200920}, pages = {877 -- 883}, year = {2013}, abstract = {A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests.}, language = {en} } @article{TurekKettererClassenetal.2007, author = {Turek, Monika and Ketterer, Lothar and Claßen, Melanie and Berndt, Heinz and Elbers, Gereon and Kr{\"u}ger, Peter and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and Electrochemical Investigations of an EIS-(Electrolyte-Insulator-Semiconductor) based Biosensor for Cyanide Detection}, series = {Sensors}, volume = {7}, journal = {Sensors}, number = {8}, isbn = {1424-8220}, pages = {1415 -- 1426}, year = {2007}, language = {en} } @article{SchoeningKirchnerNgetal.2010, author = {Sch{\"o}ning, Michael Josef and Kirchner, Patrick and Ng, Yue Ann and Spelthahn, Heiko and Schneider, Andreas and Henkel, Hartmut and Friedrich, Peter and Kolstad, Jens and Berger, J{\"o}rg and Keusgen, Michael}, title = {Gas sensor investigation based on a catalytically activated thin-film thermopile for H2O2 detection}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {787 -- 792}, year = {2010}, language = {en} }